Seminars & Conferences19.09.2024 Учёба будущего: новые профессии в сфере искусственного интеллектаСервисы на основе искусственного интеллекта (ИИ) все прочнее закрепляются в нашей жизни. Неудивительно, что на рынке появляется все больше специалистов, чья работа связана с ИИ. Поскольку их востребованность растет, в российских вузах появляются соответствующие программы. О том, как в России готовят таких специалистов, — в материале «Газеты.Ru». С 2021 года российские вузы подготовили около 23 тыс. специалистов по искусственному интеллекту. На сегодняшний день по федеральному проекту «Искусственный интеллект» национального проекта «Цифровая экономика» реализуется 86 профильных программ магистратуры и 36 — бакалавриата. На данный момент студентов российских вузов обучают работать с большими данными, проводить исследования и даже создавать уникальные решения, которые бизнес может применять на практике. Разберем несколько актуальных профессий в сфере ИИ. Разработчик систем компьютерного зрения Компьютерное зрение — это технология в области ИИ, которая позволяет обрабатывать и анализировать графические данные. Оно применяется в беспилотных автомобилях, чтобы видеть препятствия, распознавать сигналы светофора и дорожные знаки.Также технология активно используется на производствах — например, чтобы находить бракованные детали на ленте. Примеров применения у компьютерного зрения масса.
По словам эксперта, основные задачи такого специалиста включают обработку изображений и видео, разработку алгоритмов для распознавания объектов, лиц, жестов, создание систем для анализа и понимания сцены, а также внедрение компьютерного зрения в различные приложения — медицинскую диагностику, автономные транспортные средства, системы безопасности и другие сферы. Профессор подчеркивает, что компьютерное зрение входит в одну из ключевых областей искусственного интеллекта, поскольку позволяет машинам воспринимать и понимать визуальную информацию аналогично тому, как это делают люди. Это открывает множество возможностей для автоматизации процессов, роста точности и эффективности в различных Среди них:
Чтобы проектировать и обучать модели, которые наделяют компьютер способностью «видеть», специалисту нужно хорошо знать математику, алгоритмы и структуры, языки программирования — чаще Python и С++.Начать работать в этой сфере после получения диплома в области прикладной математики и информатики.
Создатели систем компьютерного зрения могут работать в технологических компаниях,разрабатывающих программные продукты и услуги, или на предприятиях по разработке автономных транспортных средств. Кроме этого, эти специалисты востребованы в сферах здравоохранения, безопасности, в научно-исследовательских институтах, университетах, где занимаются исследованиями в области ИИ и компьютерного зрения. Дата-сайентист Столь активное развитие технологий привело к взрывному росту объемов данных в мире. Они полезны для огромного количества компаний, но зачастую находятся в неструктурированном виде — в формате текстов, таблиц, аудио- и видеозаписей. Обработать такую информацию в больших объемах вручную становится сложно. Определить главную информацию и сформулировать выводы поможет дата-сайентист.
Если в городе нужно будет организовать новую схему движения транспорта, дата-сайентист сможет проанализировать поведение пешеходов и автомобилистов, спрогнозировать, как оно изменится под влиянием разных обстоятельств (например, при появлении новых домов, росте населения) и организовать маршруты так, чтобы было удобно всем. Еще один яркий пример труда дата-сайентистов — рекомендательные алгоритмы на маркетплейсах, стриминговых и прочих сервисах. Для входа в профессию нужны знания математики, программирования, баз данных. По словам Кирилла Дорожкина, чтобы стать востребованным дата-сайентистом, необходимо иметь высшее образование.
Специалист по обработке естественного языка и NLP-инженер Все более очевидной становится необходимость подготовки мультидисциплинарных специалистов. Сейчас особенно интересны направления по созданию мультимодальных моделей, а также оптимизации больших языковых моделей. В частности, высок спрос на специалистов из компьютерной лингвистики с хорошей математической подготовкой: технический базис позволяет им справляться с обучением языковых моделей, а лингвистический — давать экспертную оценку и интерпретировать результаты, для которых не всегда существуют подходящие автоматические метрики.Они могут работать специалистами по обработке естественного языка или NLP-инженерами.
NLP-инженер — более практикоориентированный, индустриальный специалист, говорит эксперт. Он нацелен на продуктовую разработку и, соответственно, занимается интеграцией LLM в чат-боты и поисковые системы. Такой специалист создает отраслевые решения, занимается улучшением производительности моделей, строит системы операций машинного обучения, разворачивает и запускает веб-приложения и сайты. Чтобы работать в этой сфере, лингвисту стоит задуматься об изучении теории вероятностей, математической статистики и сделать особый упор на машинное и глубинное обучение. При этом эксперт отмечает, что NLP-инженеру требуется меньше погружения в математические аспекты и архитектурные тонкости. Тем не менее таким специалистам нужно постоянно обновлять технологический стек и развивать смежные навыки — работу с облачными технологиями, базами данных.
При этом тем, кто хочет стать специалистом по обработке естественного языка или NLP-инженером, она рекомендует выбирать высшее образование.
Промпт-инженер Большие языковые модели являются универсальными исполнителями инструкций. Однако таким инструментом нужно уметь пользоваться, а значит — важно создать точный алгоритм действий. Например, задать формат выхода текста, его язык, стиль, форматирование. Инструкция может быть очень подробная и сложная.
Можно сказать, что у промпт-инженера две основные задачи — создать и протестировать промпт. Для этого техническая или продуктовая команда сначала составляет требования к результату, и уже на основе этих данных промпт-инженер пишет запрос модели и оценивает ответы. После он редактирует и тестирует запрос снова, пока нейросеть не сгенерирует нужный результат. Затем промпт попадает в список успешных запросов для определенных задач. Если компания занимается обучением языковой модели, промпт-инженер принимает участие в сборе данных. Он также может создавать инструкции для чат-бота, оптимизировать запросы для поиска информации, создавать сценарии для генерации текстов, обучать и настраивать ИИ-модели. Раньше этим занимались дата-сайентисты и NLP-инженеры, но с развитием больших языковых моделей появился запрос на узких специалистов, которые могут тесно работать с нейросетями и быстро писать запросы. Так появилась отдельная профессия промпт-инженера. Чтобы им стать, можно обойтись без специального высшего образования, но большим плюсом будет диплом в области компьютерных наук или лингвистики. Однако специализированные курсы по машинному обучению и промпт-инжинирингу точно пригодятся. Эксперт добавил, что такие специалисты нужны в первую очередь в компаниях, где в процессах и приложениях используются языковые модели. Так как технология новая, пока не все компании используют эти разработки, но со временем они будут повсеместно. Андрей Гришин Источники: Учеба будущего: новые профессии в сфере искусственного интеллекта – Газета.Ru, Москва, 18 сентября 2024. Профессор Лаврентьев назвал актуальные профессии в сфере умных технологий – Новости Mail.ru, Москва, 18 сентября 2024.
|