
Work-in-Progress Abstract: Revealing and
Analyzing Architectural Models in Open-source

ArduPilot
Sergey Staroletov

Polzunov Altai State Technical University / Institute of Automation and Electrometry
Siberia, Russian Federation

serg soft@mail.ru

Abstract—Building robust software can be considered a major
challenge in current software engineering processes. This task is
especially relevant for the code of cyber-physical systems (CPS)
that interact with tangible data of the environment and make
decisions that have an impact on the real world. The study of
good practices of the architectural organization of such software
systems is suitable to conduct on solutions with open-source code,
which are developed by large communities of enthusiasts. Such a
code bears a long history and has been tested many times on real
devices in a real-world environment. The construction of various
models using the program code allows us to understand stable
architectural solutions, to present them in a graphical form;
these solutions can be used in STEM centers when designing
other systems, taking into account all the achievements of the
communities. In addition, it is possible to propose methods for
analyzing models to prove various properties of cyber-physical
systems.

In this paper, we analyze ArduPilot Mega (APM), an Arduino-
compatible solution for building DIY driving and flying systems.
The solution is based on a specially designed board with a
controller and necessary peripherals, as well as a firmware code
in a C++-compatible dialect. Since there are many limitations
associated with hardware, it is advisable to carry out a so-called
co-modeling, taking into account both hardware and software
sides. We consider modeling the interaction of equipment on
connected pins and data transmission buses, the software part in
the form of a class diagram for the solution. We then describe
methods for analyzing the interactions between tasks running
on the system through shared variables and evaluating the
performance of the task scheduler.

I. INTRODUCTION

While Edward Lee defines cyber-physical systems (CPS)
as integrations of computation with physical processes [1],
we can assume that the system part is significant and needs
to be analyzed. This part can be represented by a real-time
operating system or firmware. One interesting example in the
domain of CPS is quadcopters (or quadrotors [2]), they are
now successfully used for videography, weather measurement,
or monitoring agricultural lands [3]. Such systems are also
interesting for describing and proving properties using model
checking [4] and theorem proving methods [5]. In this work,
we consider small DIY quadcopters for amateurs [6]. To un-
derstand practices (or patterns) of developing software for such
devices, we are studying the ArduPilot/ArduCopter project [7]
and its original branch [8] for Arduino devices. The hardware
controller of such a branch is cost- and energy-efficient, at the

same time, its software is optimized as much as possible to
take into account the hardware restrictions of the platform and
the requirements for the size of the code and the memory used.
In modeling, we mainly use the AADL language (described in
[9]), which is widely utilized for modeling reliable systems,
and OSATE tool [10]. This language allows engineers to
decompose the system in a simple language of property
sets and interactions between components, as well as merge
models in other modeling languages into a single model using
Annexes [11]. We also apply UML and automata models.

II. MODELING THE HARDWARE PART

The ArduPilot Mega board mainly comprises: (1) ATmega
2560 processor (8bit) [12]; (2) barometer MS5611 [13], SPI
connection; (3) 3-axes magnetometer (compass) HMC5843
[14], I2C connection; (4) 6-axes gyroscope and accelerometer
MPU-6000, SPI connection; (5) GPS, UART external inter-
face; (6) Frsky telemetry [15], UART external interface; (7)
an additional external SPI interface.

Fig. 1. A fragment of the APM board model, built from our AADL code

By modeling hardware, we here mean the connections
between various components of the board via pins, as well
as the use of data buses. For such modeling, we carefully
walk through the source code and study the communications
to the GPIO ports of the ATmega processor. As a result, we
offer Fig. 1 as part of a schematic that contains components
(processor, peripherals, buses) and connections between them,
described in AADL and represented graphically. The current
state of modeling is posted on GitHub [16]. Our models more



Fig. 2. Some notable classes and their relations in the implementation of ArduPilot/ArduCopter

accurately represent the actual hardware than some existing
open-source works [17], [18]. We are also going to take into
account the electrical connections between components.

III. MODELING THE SOFTWARE PART

First, we would like to represent the relationship between
the current classes as a class diagram (Fig. 2). Here one can
see the architecture of the solution to support different possible
types of devices, such as GPS and barometer. Secondly, we
are interested in the logical processes operating in this system
and actually providing the possibility of flight and control. We
have identified such processes in the source code as scheduler
tasks (Fig. 3). Currently, we are implementing software for
automatic source-code analysis of connections between such
tasks through shared variables. We analyze forests of control-
flow graphs [19] with functions and monitor read and write
access to variables. We expect to obtain relations between our
30+ tasks and generate an AADL code of the form [20].

IV. MODELING THE SCHEDULER

Scheduling in ArduPilot 3 refers to non-preemptive periodic
tasks. Each task (Fig. 3) is characterized by its period and the
maximum estimated operating time. When choosing a task, the
scheduler should take into account its interval and select those
tasks that can still be completed by their maximum duration
in a given time window (the scheduler period is one second).
The remaining time is also taken into account. An interesting
challenge is to check the correctness of this scheduling. Here
we can propose a modification of our approach [21] with
the implementation of a non-preemptive scheduler in Promela
[22]. We can determine our tasks that are virtually executed
for some time less than the specified maximum, implement

Fig. 3. Tasks in ArduCopter and their estimated execution times [23]

the algorithm for their scheduling according to the ideas in
the original code and check that a particular task gets its time
and investigate the reasons for potential non-executions.

V. CONCLUSION

In this paper, we considered approaches to modeling soft-
ware for the controller of a complex cyber-physical system.
Further, these models can be used to analyze things like
schedulability, reliability in case of failure of various com-
ponents, or analysis of delays by transferring sensor data over
the data buses.



REFERENCES

[1] E. A. Lee, “Cyber physical systems: Design challenges,” in 2008 11th
IEEE international symposium on object and component-oriented real-
time distributed computing (ISORC). IEEE, 2008, pp. 363–369.

[2] Q. Quan, Introduction to multicopter design and control. Springer,
2017.

[3] K. R. Krishna, Agricultural drones: a peaceful pursuit. CRC Press,
Tailor & Francis group, 2018.

[4] S. Staroletov and N. Shilov, “Applying model checking approach with
floating point arithmetic for verification of air collision avoidance ma-
neuver hybrid model,” in International Symposium on Model Checking
Software. Springer, 2019, pp. 193–207.

[5] S. Staroletov, “Automatic proving of stability of the cyber-physical
systems in the sense of Lyapunov with KeYmaera,” in 2021 28th
Conference of Open Innovations Association (FRUCT). IEEE, 2021,
pp. 431–438.

[6] C.-H. Lai and C.-M. Chu, “Development and evaluation of STEM based
instructional design: An example of quadcopter course,” in International
Symposium on Emerging Technologies for Education. Springer, 2016,
pp. 176–191.

[7] ArduPilot Copter Project, 2020. [Online]. Available: https://ardupilot.
org/copter/

[8] ArduPilot Project, 2015. [Online]. Available: https://github.com/
ArduPilot/ardupilot/tree/ArduCopter-3.2.1

[9] J. Delange, “AADL in practice: Become an expert in software architec-
ture modeling and analysis,” Reblochon Development Company, 2017.

[10] P. Feiler, “The open source AADL tool environment (OSATE),” Carnegie
Mellon University Software Engineering Institute Pittsburgh, Tech. Rep.,
2019.

[11] J. Delange and P. Feiler, “Architecture fault modeling with the AADL
error-model annex,” in 2014 40th EUROMICRO Conference on Software
Engineering and Advanced Applications. IEEE, 2014, pp. 361–368.

[12] Atmel ATmega640 / V-1280 / V-1281 / V-2560 / V-2561 Datasheet,
2014. [Online]. Available: https://www.microchip.com/wwwproducts/
en/ATmega2561

[13] MS5611-01BA03 Barometric Pressure Sensor, with stainless
steel cap. [Online]. Available: https://www.te.com/commerce/
DocumentDelivery/DDEController?Action=showdoc&DocId=Data+
Sheet%7FMS5611-01BA03%7FB3%7Fpdf%7FEnglish%7FENG DS
MS5611-01BA03 B3.pdf

[14] Honeywell 3-Axis Digital Compass IC HMC5843. [Online]. Available:
https://www.sparkfun.com/datasheets/Sensors/Magneto/HMC5843.pdf

[15] FrSky Electronic. [Online]. Available: https://www.frsky-rc.com
[16] Co-modeling Ardupilot, 2021. [Online]. Available: https://github.com/

SergeyStaroletov/Co-modeling-Ardupilot
[17] J. Hugues, “AADLib, a library of reusable AADL models,” SAE

Technical Paper, Tech. Rep., 2013.
[18] OpenAADL/AADLib boards-ardupilot, 2018. [Online]. Avail-

able: https://github.com/OpenAADL/AADLib/blob/master/src/aadl/
boards/boards-ardupilot.aadl

[19] L. Serrano, “Automatic inference of system software transformation
rules from examples,” Ph.D. dissertation, Sorbonne Université, 2020.

[20] POK Ardupilot example. [Online]. Available: https://github.com/
pok-kernel/pok/tree/main/examples/case-study-ardupilot

[21] S. M. Staroletov, “A formal model of a partitioned real-time operating
system in Promela,” Proceedings of the Institute for System Program-
ming of the RAS, vol. 32, no. 6, pp. 49–66, 2020.

[22] V. Natarajan and G. J. Holzmann, “Outline for an operational semantics
of Promela.” The Spin Verification System, vol. 32, pp. 133–152, 1996.

[23] ArduPilot/ArduCopter Project. Tasks, 2015. [Online].
Available: https://github.com/ArduPilot/ardupilot/blob/ArduCopter-3.2.
1/ArduCopter/ArduCopter.pde#L777


