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Abstract—We investigate the formal verification of the control software of critical systems, i.e., the ver-
ification of the compliance of the designed system with the requirements. The most important class of
control software consists of programs for programmable logic controllers (PLCs). A special feature of
PLC programs is the scan cycle: 1) the inputs are read, 2) the PLC states are changed, and 3) the out-
puts are written. Therefore, for formal verification of PLC programs, for example by model checking,
it is necessary to be able to describe transition systems that take into account this specificity. In addi-
tion, it is required to determine properties of systems that model PLC programs, both with respect to
transitions within the cycle as well as larger transitions in accordance with the semantics of the scan
cycle. In this paper, we introduce a formal model of a PLC program as a system of hyperprocess tran-
sitions and the temporal cycle-LTL logic based on the LTL logic for formalizing the properties of the
PLC. A special feature of the cycle-LTL logic is the ability to consider the properties of control systems
in two ways: as an impact of the environment on the control system and as an impact of the control
system on the environment. We define modifications of the standard temporal operators of the LTL
logic for each of these cases, as well as for properties inside the scan cycle. Examples of requirements
defined in our logic are considered. The translation of cycle-LTL formulas into LTL formulas is
described and its correctness is proved. Thereby we demonstrate the possibility of reducing the prob-
lem of verification by model checking for the requirements defined in the cycle-LTL logic to the model
checking problem for the requirements defined in the standard LTL logic.

Keywords: formal verification, temporal logics, transition systems, programmable logic controllers
(PLC)
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INTRODUCTION
In the last decade, in connection with solving problems that impose increased security requirements

on control systems based on programmable logic controllers (PLCs), researchers have already developed
solutions for formal modeling of programs for such controllers and proving their properties, in particular,
expressed in the form of formulas of temporal logics.

The long-term goal of our work is the formal verification of programs for automatic control systems
written within the process-oriented paradigm, and, in particular, programs written in the process-oriented
Reflex language [1, 2]. Formal verification of programs for PLCs, which are important components of
automatic control systems, is an urgent topic of theoretical and practical work [3, 4]. The proposed
approaches follow various formal PLC models [3–7]. In general, the operation of a PLC consists of an
infinite sequence of control cycles. Each control cycle includes a sequence of three phases: (1) reading the
inputs, (2) execution, and (3) writing the outputs.

We use process-oriented modeling of PLC programs based on hyperprocesses [2]. This modeling
method allows us to naturally determine the main features of PLC programs, such as the control cycle and
timers; it describes a PLC program as a synchronized system of interacting processes determined by a set
of functional states and actions in these states. According to the classification in [5], a hyperprocess sim-
ulates a program for a PLC that abstracts from the execution time of the control cycle1 and uses input and
output control timers. Such modeling provides a natural specification for multiprocessor control systems,
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which, by abstracting from the time of the control cycle, allows one to strictly order the sequence of exe-
cution of processes in the control cycle. Such a strong synchronization of processes without alternation
makes it possible to effectively use formal verification methods. Hyperprocess is the basis for the subject-
oriented Reflex language, which has shown its productivity in several industrial projects, in particular, in
the equipment for growing single crystals of silicon by the Czochralskimethod [8] and the vacuum system
for a large solar vacuum telescope [9].

In this paper, we use model checking as our formal verification method. Therefore, a hyperprocess is
presented as a transition system of a special kind, and the properties of the hyperprocess are expressed as
formulas of a temporal logic. The hyperprocess transition system is close to a parallel multithreaded sys-
tem [10], enriched with a synchronizing counter, functional states of processes, timers, and action prim-
itives for changing them. The time for a PLC program defined as a hyperprocess, is clocked not only
within the execution phase of the control cycle (with each change in the values characterizing the states of
the processes), but also on a larger scale – for a sequence of control cycles, i.e., when reading inputs/writ-
ing outputs.

A logic for specifying requirements for the PLC program should enable formulating statements regard-
ing the above two types of clocking. In this paper, we introduce the cycle-LTL logic, which enriches the
LTL temporal logic [11] with cyclic temporal operators for analyzing the states of a PLC program at the
beginning and at the end of the control cycle, as well as with intracycle temporal operators for defining the
properties of the PLC program. In this logic, for some abstract control algorithm, it is possible to express
the following properties: “If the sensor is triggered, the device will turn on in the next control cycle” or “If the
temperature is above the critical value, the cooling process is always on.” Note that if the cooling process is
switched on and off after the actions of other processes in the execution phase of the control cycle, the
latter property may be violated inside this phase, but may be preserved outside it. This example illustrates
the need to use cyclic temporal operators, in particular, the operator “always” .

Let us provide an overview of the formalisms currently used in this area of research. Initially, an exten-
sion of the time automaton, PLC-automaton [12], was developed to describe the behavior of programs for
PLCs in the automata form, while further research mainly focused on the use of logical systems, rather
than automata.

In [13], methods for verifying PLC programs are evaluated in both text and graphical form using vari-
ous model verification tools, and specific types of real programs are provided. The current problems in
this area are also described—in particular, the problem of combinatorial explosion, the modeling of tim-
ers, the definition of properties for checking, and the problem of modeling the execution cycle of such
programs, which is the subject of this work.

There are known methods for representing PLC programs in the form of LTL formulas. According to
the approach in [14], the value of each variable should be changed only once in one place of the program
during one complete execution of the PLC working cycle. Therefore, a change in the value of each pro-
gram variable is represented by two explicit and one implicit LTL formulas. Thus, it is proposed to reduce
PLC programming to the construction of an LTL specification for each program variable. In this case, the
Turing completeness of languages of the IEC 61131-3 standard is proven using Minsky machines.

In [15], methods of automatic mining of invariants are presented using a causal graph of event relation-
ships for a running PLC program in order to obtain TPTL [16] formulas for safety properties. It is noted
that, at run time, it is difficult to enforce a rule based on the LTL formula that requires one action to be
followed by another, since the absence of a required event during the limited testing time does not imply
its absence at a later time.

In [17], a method is proposed for automatically obtaining specifications for given patterns of LTL for-
mulas by running execution cycles of IEC 61131-3 programs. In [18], the PLC code was translated into the
input language of the SMV verifier to check models according to the identified invariants.

The development of domain-specific extensions of temporal logics to specify requirements for indus-
trial controllers has begun recently. An overview on this topic is given in [19], where, in particular, the ST-
LTL logic is proposed [20]. The main improvements over LTL are the use of the previous variable values
instead of the next state operator, as well as the introduction of the WhileNScanCycles operator to work
with the values of control variables at the Nth step, which significantly differs from our approach and leads
to more complex specifications and proofs. In [21], the real-time temporal logic MITL[a,b] is introduced,
where all temporal modalities are limited to the time interval [a,b], and then the STL logic (signal tempo-
ral logic) is introduced based on filtering signals and transition from real numbers to natural numbers.

1 The environment is considered slow enough to count the time of the I/O phases and the execution of the control cycle as zero.
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Thus, our approach is in line with the current trends in the development of approaches to formal spec-
ification and verification of programs, which focus on expanding existing logics in the context of control
cycle modeling. The first version of our approach is presented in [22].

The rest of the article is organized as follows. In Section 1, we define a hyperprocess transition system.
Section 2 describes the syntax and semantics of the cycle-LTL temporal logic. In Section 3, we show that
every formula of cycle-LTL can be expressed in the temporal logic LTL, and that the model checking
problem for cycle-LTL and the hyperprocess transition system is decidable. Section 4 contains a conclu-
sion and a plan for future work.

HYPERPROCESS TRANSITION SYSTEM
Let us provide an informal description of a hyperprocess [2]. A hyperprocess is an ordered set of inter-

acting processes that execute sequentially in a given order, forming a control cycle. This cycle begins by
reading input data from the environment into the system input variables of the hyperprocess and ends with
writing the output data (control impacts) to the corresponding output variables. The values of the output
variables are obtained during the execution phase. We assume that changes in the data from the environ-
ment occur slowly enough for all processes to have enough time to work in the execution phase. Thus, one
control cycle can be considered as a logical unit of time for a hyperprocess. All hyperprocess variables are
global. A special feature of the processes that form a hyperprocess are their functional states – labels denot-
ing a certain sequence of process actions. Among the functional states, the states of normal stop and erro-
neous stop, in which the process does not perform any actions, are distinguished. The actions of the pro-
cesses can change the values of the hyperprocess variables (except for the input variables), have a limited
effect on the functional states of other processes, and set and reset the timer values. Actions may have
guard conditions that depend on the variables of the hyperprocess and the functional states of other pro-
cesses. Our definition of a hyperprocess transition system is based on the description of hyperprocesses
and the operational semantics of the Reflex language [1, 2].

Definition 1. (Hyperprocess Transition System, HTS)
The hyperprocess transition system is the five-tuple , where
•  is the ordered set of processes;
•  is the nonempty set of states;
•  is the initial state;
•  is the action alphabet;

•  is the labeled transition relation .
Before defining the HTS components, let us describe the elements of a hyperprocess in general.
Definition 2. (Elements of a hyperprocess)
The elements of a hyperprocess are variables, functional states, process actions, and timers:
• Variables.  is the set of hyperprocess variables. The values of the variables in a particular

state of a hyperprocess are defined by the corresponding functions . We distinguish
between input variables , output variables , and internal variables : .

• Functional states. For each ,  is the set of functional states of the pro-
cess . Inactive states  and are distinguished. The remaining states are active. The value of the
functional state variable  for each process  in the state of the hyperprocess is described by the function

.

• Actions. In an active functional state , the process  performs actions from the set . These
actions form the body of the functional state.  is the number of actions in the body . For each pro-
cess,  is the action counter, and its value is the position. The value of the action counter in the hyperprocess
state is the result of the function . The next action of the process in the functional
state is determined by the functions . These functions implicitly set guard condi-
tions for actions, since they depend on the current state of the hyperprocess, in particular, on the state of
activity of other processes. If there is no next action in the current functional state, i.e., the end of its body
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has been reached, then . The functions  return the name of the action at the
position .

• Timers. The timer of the process  is a variable  whose values in the hyperprocess state are the result
of the function . The timeout value at the position  of the functional state  is .
For the sake of simplicity, here we only consider processes that have no more than one timer start per
functional state.

Now we proceed to define the components of the hyperprocess transition system .
Set of states 
The state  includes the following elements:
• evaluation of variables : vector of values of variables in the state ;
• state of processes , where for each process  in the state

,  is its current functional state,  is the counter of actions in the state , and  is the value
of its timer;

• counter of processes  with values in , where  is reserved for reading input data, and
 for writing output data.

Initial state 
, where

• ,

• , and
• .
Action alphabet 
The alphabet includes input and output data update actions, as well as process actions:

.
0. Cycle actions.

 – changing the values of input variables (reading inputs from the environment).
 – changing the values of output variables (writing outputs to the environment).

1. Service actions.
 – the process does nothing in inactive states.
 – upon termination of a process in an active state, the progress is transferred to the next process.

2. The action of updating the values of internal variables.
 – the process changes the values of some internal variables.

3. Actions with the timer.
 – the process starts the timer and performs actions in the current functional state until the timeout

occurs;
 – the process resets its timer to zero.

4. Actions with functional states.

 – the process translates the target process  into the functional states / ;

/  – the process goes to the target functional state / ;
/  – the process goes to the functional state / ;
 – the process goes to the next functional state.

Relation of labeled transitions 
The transition relation  defines the semantics of process actions and input updates. Let

, . We will use the following notation for process actions.
The expression
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means that for all states  that satisfy the precondition (the expression to the left of the arrow) and all states
 that satisfy the postcondition (the expression to the right of the arrow)  is true, and along

with this

• , and ;

• the starting state  is such that , , , the time bound  can be ,
, , or , and the target limitation  can be  or , where  is a

variable from  with values in  to set the target process, and  is a variable in  with values in 
to set the target functional state of the process ; elements not mentioned on the left have arbitrary values;

the resulting state s' specifies changes in the elements of the hyperprocess after the action :
 ( ); elements not mentioned on the right do not change.

0. Actions for updating input and output variables.
We use a similar notation to define  and .
At the beginning of the control cycle, the input data values are read into the input variables from ,

the value of each activated process timer is increased by , and the process counter is shifted to the first
process:

–  .
The action of reading input data is the only action in the system that is, generally speaking, nondeter-

ministic.
At the end of the control cycle, the values of the output data are written to the output variables from

, and the process counter is shifted to the beginning of the control cycle:

– 
This action is deterministic.
In defining the transition relation  for process actions, we consider the process  that performs an

action number  named  in an active functional state , or in an inactive state.
1. Service actions.
The process  does nothing in the inactive states  and , and the move is passed to the next pro-

cess:
— .

— .

When the process  reaches the end of the body of the active functional state , it goes to the first
action of this state, which it will perform in the next control cycle (unless another process transfers it to a
different state), and the move is passed to the next process:

— .
2. The action of updating the values of process variables.
With this action, the process  changes the values of some internal variables , and

passes to the next action  of the current functional state:

— ;
This action is deterministic.
3. Actions with the timer.
In the following cases, the process  starts the timer  (if ), proceeds to the first action of the cur-

rent functional state , and the move is passed to the next process:

— ;

— .
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If the timeout event occurs, the process  stops the timer  and passes to the next actions of the current
functional state:

— .

The result of the action  is similar to the result of the first case of the action :

— .

4. Actions with functional states.
The following two actions of the process  transfer the process  ( )) to the state ,  or its

first functional state. Note that the hyperprocess model satisfies the principle of limited encapsulation: a
process cannot transfer another process into an arbitrary functional state.

— ;

— ;

— ;

With the following actions, the process  sets that in the next control cycle it will start from the first
action of the corresponding functional state, and stops the timer:

— ;

— ;

— .

The process  goes into a state of normal or erroneous shutdown:

— ;

— .

According to the definition of the transition relation, processes act sequentially in the current control
cycle in the order specified by the process counter. Note that the transition relation is nondeterministic
only for the action of reading the input data , which is not an action of any process. Let the output states

 be the states in which . In these states, the output variables received new values. Thus, the
output states reflect the dependence of the output data (reactions of the control system) on the input data
(on the control object). Let’s define the input states  as states immediately after reading the inputs to the
input variables and before the processes started to act: . Thus, the input states ref lect the
possible dependences of the input data (reactions of the control object) on the output data of the control
system at the previous control cycle. Due to the determinism of the actions of processes, the nearest out-
put state is uniquely determined for a given input state; however, different inputs can still lead to the same
output: for example, a certain range of input values can be processed in the same way. Let  be a set of
input states, and  be a set of output states.

Let us define three kinds of paths in HTS. The standard path  is a sequence of states 
such that . Let  be the th state on the path . An input path 
is an infinite sequence of input states  such that for each  there is a finite standard path  of
length  with  and . An -output path  is an infinite sequence of - output
states  such that for each  there is a finite standard path  of length  with  and

. An arbitrary path  is a subpath of the path  if  is a subse-
quence of . Accordingly, χ' is a superpath of . If the path  goes inside , then we write .

Further in the paper,  is a standard, input or output path,  is a standard path,  is an input path, 
is an output path. Let us give a definition of additional paths that are used when defining the semantics of
the temporal operators of cycle-LTL.
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Definition 3. (Paths and their elements)
1.  is the -th state on the path ;

2.  is the suffix path of  such that ;

3.  is the number of the -th input state on the path ;

4.  is the number of the -th output state on the path ;
5.  is the path containing a given path  so that their beginnings coincide; i.e.,  is a subpath of  and

 (this path is the only one, since the processes process input data deterministically);
6.  are the paths containing a given path  so that their origins coincide; i.e.,  is a subpath of  and

;

7.  are the input paths that start earlier than the given path , but are contained in it, starting from
their second state; i.e.,  where  is such that ;

8.  are the input paths, the superpaths of which contains the given path  from the nearest output

state; i.e.,  is a subpath of  and ;

9.  is the output path that starts later than the specified path , but is contained in it, and its begin-
ning is the first output state of ; i.e., , where  is such that  (this path is the only
one, since all its states lie on the given path );

10.  is the output path, the superpath of which contains the given path  from the nearest preceding
input state; i.e.,  is a subpath of  and  (this path is the only one, since processes generate
deterministic output for given input data).

Figure 1 illustrates the concepts of definition 3.

CYCLE-LTL: A TEMPORAL LOGIC FOR PLC
The syntax of the cycle-LTL logic contains atomic statements , Boolean connectives, standard tem-

poral operators of LTL, input, internal and output cycle temporal operators: 1em

.
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Internal cycle temporal operators , , , and  are used to formulate properties that must hold
during the execution phase of control cycles, while using the input and output cycle operators , , , ,

, , , and , you can describe the properties of control systems that hold at the beginning and at
the end of control cycles.

Let  be the set of formulas starting with standard LTL operators,  be the set of formulas starting
with the internal operators,  be the set of formulas starting with the input operators,  be the set of
formulas starting with the output operators, and  be the set of all cycle-LTL formulas.

We traditionally define the semantics of the cycle-LTL logic in terms of the relation of satisfiability 
between a formula and a path in HTS: , where  is the hyperprocess transition system,  is an
infinite standard, input or output path, and . We consider all kinds of paths for formulas with cyclic
temporal operators, and input/output paths for standard LTL formulas. The semantics of standard LTL for-
mulas on standard paths can be found in [11]. Let  be a hyperprocess transition system,  be an infinite
standard path,  be an input path,  be an output path, and  be the cycle-LTL formulas. 1em

Semantics of formulas .

Let .
•   ;
•   for all  ,  is true;

Semantics of formulas .

Let .
•   ;
•   for all  ,  is true;

•    and ;

•   there is  such that  and ;

•   for all   and ;

•   there is  such that  and  and for all 
 and .

Semantics of formulas .

Let .

•   for all ,  is true;

•   for all ,  is true;

•   ;

•   there is  such that ;

•   for all  ;

•   there is  such that  and for all  .

Semantics of formulas .

Let .

•   ;

•   ;

•   ;

eX eF eG eU
iX iF iG iU

oX oF oG oU

Φs Φe

Φi Φo

Φc

�

, χ ξH � H χ
ξ ∈ Φc

H π
ρ σ ϕ, ψ ∈ Φc

Φs

ξ ∈ Φs

,ρ ξH � ⇔ ρ, π ξH �

,σ ξH � ⇔ σπ σ, π ξH �

Φe

ξ ∈ Φe

,ρ ξH � ⇔ ρ, π ξH �

,σ ξH � ⇔ σπ σ, π ξH �

, π ϕH eX� ⇔ π ∉ ∪(1) i oS S , π ϕ1H �

, π ϕH eF� ⇔ π≤ < 10 k o π ∉ ∪( ) i ok S S , π ϕkH �

, π ϕH eG� ⇔ π≤ < 10 k o π ∉ ∪( ) i ok S S , π ϕkH �

, π ϕ ψH eU� ⇔ π≤ < 10 k o π ∉ ∪( ) i ok S S , π ψkH � ≤ <0 j k
π ∉ ∪( ) i oj S S , π ϕjH �

Φi

ξ ∈ Φi

, π ξH � ⇔ πρ π,ρ ξH �

,σ ξH � ⇔ σρ σ,ρ ξH �

,ρ ϕH iX� ⇔ ,ρ ϕ1H �

,ρ ϕH iF� ⇔ ≥ 0k ,ρ ϕkH �

,ρ ϕH iG� ⇔ ≥ 0k ,ρ ϕkH �

,ρ ϕ ψH iU� ⇔ ≥ 0k ,ρ ψkH � ≤ <0 j k ,ρ ϕjH �

Φo

ξ ∈ Φo

, π ξH � ⇔ π,σ ξH �

,ρ ξH � ⇔ ρ,σ ξH �

, σ ϕH oX� ⇔ ,σ ϕ1H �
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•   there is  such that ;

•   for all  ;

•   there is  such that  and for all  .
Let us illustrate the specifications in the cycle-LTL language for control systems using the example of

a fan heater and a temperature maintenance device:
• If hands appear under the dryer, it will be turned on in the next control cycle:

.
• If the temperature is higher than the maximum value, then the cooling process is always on:

.
• The heating element is switched on if the temperature has dropped below the minimum value:

.
• If the heating element is turned on, then over time the temperature will rise above the minimum value:

.
Note the variability of the cycle-LTL syntax when describing the properties of a hyperprocess. In the

formulas of examples 1 and 3, you can use both the operator  (with ), and : in both cases, the prop-
erties of the dependence of the values of the nearest output on the input data are set. The choice of one or
another representation of a system property depends on the user’s preferences.

The above examples of system properties use only cyclic states and observable input–output variables
of the system. Formulas of this kind can be used to define high-level properties of control systems and
algorithms, independent of the implementation, when the control system is viewed as a black box. How-
ever, if a high-level property has not been satisfied for some implementation of the control system, then
for further analysis it may be necessary to check the low-level properties of the system, formulated in terms
of the states and actions of the processes that implement it. These properties of the system are defined in
the form of hypotheses using intracycle logic operators, which allows to localize the error within the exe-
cution phase of the control cycle. In some cases, checking such hypotheses is less labor-intensive than
analyzing a counterexample for a high-level property. Consider a system that combines a lighting control
system and a burglar alarm. The following two properties of this system illustrate the causal relationship
between low-level hypotheses and high-level properties: non-satisfiability of a low-level formula  entails
non-satisfiability of a high-level formula .

• When a break-in is detected, all the lights flash in emergency mode:

.
• If the break-in sensor is triggered, the process of external interaction of the security alarm system sends a

signal message to all connected systems, including the lighting control system, during the next control cycle:

.
The choice of hypothesis 2 is due to the assumption that in the case of sending a signal message, it will

be received in time and, after receiving it, the emergency operation of the lamps will immediately work.

CONVERTING THE LOGIC FORMULAS OF CYCLE-LTL TO LTL

We consider formulas  of the cycle-LTL logic to be equivalent ( ) if and only if
   for an arbitrary HTS  and an arbitrary path . In this section, we show that for

formulas with cyclic operators , there are standard LTL formulas equivalent to them with
additional atomic statements.

Let us add two auxiliary Boolean variables  and  to the description  of the HTS states.
Let the variable  be true only in the input states from , and the variable  be true only in the
output states from . Then for the corresponding atomic statements it is true that  for all
paths  such that , and  for all paths  such that , as well as 
for all paths  such that , and  for all paths  such that . Let  be a
hyperprocess transition system,  be an infinite standard path,  be an input path,  be an output path,

,σ ϕH oF� ⇔ ≥ 0k ,σ ϕkH �

, σ ϕH oG� ⇔ ≥ 0k ,σ ϕkH �

, σ ϕ ψH oU� ⇔ ≥ 0k ,σ ψkH � ≤ <0 j k ,σ ϕjH �

= → =( )hands on dryer oni iG X

> ° → =( 95 )temp cooler oniG

< ° → =( 5 )temp heater onoG

= → ≥ °( 5 )heater on tempo iG F

iG iX oG

2
1

→ =( )alarm alarm_light oni iG X

→( )alarm alarm_message_senti eG F

ξ,ξ ∈ Φ' c ξ ≡ ξ'
, χ ξH � ⇔ ,χ ξ'H � H χ

Φ ∪ Φ ∪ Φe i o

Input Output H
Input iS Output

oS , πH Input�

π π ∈(0) iS , π ≠|H Input π π ∉(0) iS , πH Output�
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and . Since the proofs of the propositions below use induction on the structure
of the formula, we can assume that below the subformulas of formulas with cycle operators ϕ and  are
LTL formulas.

Proposition 1. Cycle-LTL formulas with initial inner cycle operators are equivalent to the following
LTL formulas:

• ;

• ;

• ;

• .
Proof.
The proof uses induction on the structure of the formula. Let us first consider the standard paths. Note

that     .

•      

     ;

•       

    

      ;

•       

       ;

•       

    

      .

The equivalence of the formulas  and the above formulas  on standard paths is proven. Let 
and  be the corresponding LTL-formula. Let us show the equivalence of these formulas on the
input and output paths.

•       ;
•       . 
Proposition 2. Cycle-LTL formulas with initial input cycle operators are equivalent to the following

LTL formulas:

• ;

• ;

• ;

• .
Proof.
The proof uses induction by the structure of the formula. Let us first consider the input paths.

•    

    
  ;

•     

= ¬ ∨( )Exe Input Output
ψ

ϕ ≡ ϕ ∧( )ExeeX X

ϕ ≡ ϕ ∧( ) ( )Exe ExeeF U

ϕ ≡ ϕ ∧ ¬( ) ( )Exe ExeeG U

ϕ ψ ≡ ϕ ∧ ψ ∧( ) ( )Exe ExeeU U

π ∉ ∪( ) i ok S S ⇔ , π ¬ ∨( )kH Input Output� ⇔ , πkH Exe�

, π ϕH eX� ⇔ π ∉ ∪( (1) )i oS S ∧ , π ϕ1( )H � ⇔

, π ∧1( )H Exe� , π ϕ1( )H � ⇔ , π ϕ ∧1H Exe� ⇔ , π ϕ ∧( )H ExeX�

, π ϕH eF� ⇔ π∃ ≤ < :10 k o π ∉ ∪( ( ) )i ok S S ∧ , π ϕ( )kH � ⇔

π∃ ≤ < :10 k o , π( )kH Exe� ∧ , π ϕ( )kH �

π.
⇔

1def o

π∃ ≤ < :10 k o , π ϕ ∧( )kH Exe� ∧ ∀ ≤ ≤0 j k , π( )jH Exe� ⇔ , π ϕ ∧( ) ( )H Exe ExeU�

, π ϕH eG� ⇔ π∀ ≤ < :10 k o π ∉ ∪( ( ) )i ok S S ∧ , π ϕ( )kH � ⇔
π∀ ≤ < :10 k o , π( )kH Exe� ∧ , π ϕ( )kH � ∧

π

, π 1( )oH Output� ⇔ , π ϕ ∧ ¬( ) ( )H Exe ExeU�

, π ϕ ψH eU� ⇐⇒
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Φe Φs ξ ∈ Φe

ξ ∈ Φ' s

,ρ ξH � ⇔ ρ, π ξH � ⇔ ρ, π ξ'H � ⇔ ,ρ ξ'H �
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ϕ ≡ ¬ ∧ ϕ( ( ))Input InputiX X U

ϕ ≡ ∧ ϕ( )InputiF F

ϕ ≡ → ϕ( )InputiG G

ϕ ψ ≡ → ϕ ∧ ψ( ) ( )Input InputiU U

,ρ ϕH iX� ⇐⇒ ,ρ ϕ1H �

ρ.π ,

⇐⇒

def Input

π∀ ≤ < :21 k i ρ, π ¬( )kH Input� ∧
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  ;

•     

      

 ;  ;

•        

     

     
  .

The equivalence of the formulas  and the above formulas from  on the input paths is proved. Let
 and  be the corresponding LTL formula. We show the equivalence of these formulas on the

standard and output paths. The proof is based on the definition of the paths , , , and .

•       ;

•         .
Proposition 3. Cycle-LTL formulas with initial output cycle operators are equivalent to the following

LTL formulas:

• ;

• ;

• ;

• .
Proof.
The proof uses induction on the structure of the formula. Let us first consider the output paths.

•    

    
  ;

•     :  

  :    

  :    
;

•      

     

     
;

∃ ≥ :0k ,ρ ϕ( )kH � ∧ ,ρ( )kH Input�

ρ.π

⇐⇒

def

∃ ≥ :0j ρ, π ∧ ϕjH Input� ⇔

ρ, π ∧ ϕ( )H InputF� ⇔ ,ρ ∧ ϕ( )H InputF�

,ρ ϕH iG� ⇔ ∀ ≥ 0k ,ρ ϕkH �

.ρ
⇐⇒

def
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ρ.π ,

⇐⇒

def Input

∀ ≥ 0j ρ, π → ϕ( )jH Input�

⇔ ρ, π → ϕ( )H InputG� ⇔ ,ρ → ϕ( )H InputG�

,ρ ϕ ψH iU� ⇔ ∃ ≥ :0k ,ρ ψ( )kH � ∧ ∀ ≤ < :0 j k ,ρ ϕ( )jH �

.ρ
⇐⇒

def

∃ ≥ :0k ,ρ ∧ ψ( )kH Input� ∧ ∀ ≤ < :0 j k ,ρ ∧ ϕ( )jH Input�

ρ.π ,

⇐⇒

def Input

∃ ≥ :0l ρ, π ∧ ψ( )lH Input� ∧ ∀ ≤ < :0 i l ρ, π → ϕ( )iH Input� ⇔

ρ, π → ϕ ∧ ψ( ) ( )H Input InputU� ⇔ ,ρ → ϕ ∧ ψ( ) ( )H Input InputU�

Φi Φs

ξ ∈ Φi ξ ∈ Φ' s

ρπ πρ πσ σρ
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def
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•          

  :      

  :      

  .

The equivalence of the formulas  and the above formulas from  on the input paths is proved. Let
 and  be the corresponding LTL formula. We show the equivalence of these formulas on

standard and input paths. The proof is based on the definition of the paths , ,  and .

•       ;

•   ;      .

This proposition is a direct consequence of the previous ones.

Proposition 4. For each formula from , there is an equivalent LTL formula of linearly
longer length.

The task of verifying models for cycle-LTL logic formulas and hyperprocess transition systems is to
determine the semantics of cycle-LTL formulas in a given HTS, i.e., in calculating the set where->

. Note that for any HTS, it is possible to construct a Kripke
structure containing the same set of standard paths in polynomial time. Due to this remark, Proposition 4, and
the estimation of the complexity of the model checking problem for LTL [11], the following theorem is
satisfied:

Theorem 1. There is an algorithm that solves the model checking problem for cycle-LTL formulas and
hyperprocess transition systems. Its complexity polynomially depends on the size of the hyperprocess
transition system, and exponentially depends on the length of the cycle-LTL formula.

CONCLUSION

In this paper, we have developed a hyperprocess transition system (HTS) for modeling software for
programmable logic controllers (PLCs) and a new cycle-LTL logic for formulating PLC properties. This
HTS model naturally captures the features of PLC programs, such as control cycles and timers. The pro-
posed temporal logic cycle-LTL allows us to describe the properties of PLC programs both of small time
steps of the inner phase of the execution of control cycles, and of large time steps of the control cycles them-
selves. We described the translation of cycle-LTL logic formulas into LTL logic formulas and proved its correct-
ness. This translation demonstrates that the formulation of the properties of control systems directly in terms of
LTL logic turns out to be much more complicated and confusing. We have shown that due to the correctness
of this translation, the problem of verifying models for HTS and cycle-LTL is decidable.

We plan to use the results presented in this article to ensure the correct translation of the process-ori-
ented Reflex language into the Promela language used by the SPIN verifier [23]. In addition, we are going
to develop and implement a special model checking algorithm for cycle-LTL and HTS. We expect that
this algorithm in many cases will have a lower time complexity than the standard model checking algo-
rithm for LTL, due to the use of such features of HTS as cyclicity, strict order of process actions, and deter-
minism of these actions. We also plan to explore the possibility of using the cycle-LTL logic to formulate
the properties of more general transition systems.
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