
2021 IEEE 22nd INTERNATIONAL CONFERENCE OF YOUNG PROFESSIONALS IN ELECTRON DEVICES AND MATERIALS (EDM)

978-0-7381-4389-7/21/$31.00 ©2021 IEEE

Proving Reflex Program Verification Conditions in

Coq Proof Assistant
Ivan Chernenko

Institute of Automation and

Electrometry, SB RAS

Novosibirsk, Russia

Igor Anureev

Institute of Automation and

Electrometry, SB RAS

Novosibirsk, Russia

Natalia Garanina

Institute of Automation and

Electrometry, SB RAS

Novosibirsk, Russia

Abstract— The process-oriented paradigm is a promising

approach to the development of control software based on the

natural concept of the process. Many safety-critical systems

uses control software. This is a reason for formal verification

such systems. Deductive verification is the formal methods of

proving the program correctness (the satisfiability program

requirements). Requirements are formalized as annotations

added to programs. The resulting annotated programs are

reduced to verification conditions – formulas in some logical

language. The original program is considered to be correct if

all the verification conditions are true. This paper presents the

results of experiments on proving verification conditions in

Coq proof assistant within the framework of the two-step

method of deductive verification of process-oriented programs

in Reflex language.

Keywords— process-oriented programming, Reflex language,

deductive verification, requirements, annotations, verification

conditions, temporal properties, control software

I. INTRODUCTION

The formal basis of process-oriented programs is the

hyperprocess model [1] – a special type of finite state

automata, in which states are distributed into classes called

processes. Process states are defined as sequences of

actions, including actions to change the states of other

processes and actions with timeouts. Thus, process-oriented

programs are defined as sets of communicating processes.

The process-oriented program language Reflex [2] is a

domain-specific language that describes a control system as

a set of interacting processes at the top level, while

maintaining the familiar C syntax at the bottom level. This

made it possible to successfully apply it in a number of

industrial applications, e. g. control software for a silicon

single crystal growth furnace, a big solar vacuum telescope

and precision angle measuring machine which are examples

of safety-critical systems [3, 4]. Such systems require

applying formal verification methods, in particular,

deductive verification [5] as rather powerful approach.

We developed the two-step method of deductive

program verification for Reflex programs [6]. In the first

step, the annotated Reflex program is translated into a

limited subset of annotated C programs, and in the second

step, verification conditions are generated for programs

from this subset.

The main difficulty of deductive verification for program

correctness is the proof of generated verification conditions.

In [6], the two-step method was applied to a hand dryer

control program and two requirements for this program were

verified using the Z3 SMT solver [7]. The experiments

showed that this solver could not handle requirements which

verification conditions contain quantifiers and require

inductive proof. In this paper, we used the same example to

show that the Coq proof assistant [8] successfully verified 5

requirements for this hand dryer control program due to

ability to prove higher-order logic formulas and use

inductive proof schemes.

In the rest of the paper, we provide the code of the

Reflex hand dryer control program (Section II), the

requirements for this program (Section III), annotations, that

are a formal description of these requirements (Section IV),

the result of the transformation of the hand dryer control

program into the C program (Section V), the generated

verification conditions (Section VI) and describe the

proving verification conditions in the Coq proof assistant

with the standard Coq library (Section VII).

II. REFLEX PROGRAM

We consider the program HandDryerController:

PROGR HandDryerController {

 tact 100;

 const ON true;

 const OFF false;

 proc Ctrl {

 bool hands;

 bool dryer;

 state waiting {

 if (hands == ON) {

 dryer = ON;

 set next;

 }

 else

 dryer = OFF;

 }

 state drying {

 if (hands == ON) reset timeout;

 timeout 10 set state waiting;

 }

 }

}

Single process Ctrl is defined in this program. This

process has two states waiting and drying. Two logical

variables are declared: hands and dryer. The variable hands

shows whether hands are detected under the fan heater. Its

value is changed by the environment. The dryer variable

describes whether the fan heater is turned on. In the waiting

state, the process checks if there are hands. If hands are

detected, the fan heater turns on and the process goes to the

drying state; if there are no hands, the fan heater turns off. In

the drying state, the process also checks if there are hands. If

hands are detected, the timeout is reset. The program tact is

2021 22nd INTERNATIONAL CONFERENCE OF YOUNG PROFESSIONALS IN MICRO- AND NANOTECHNOLOGIES AND ELECTRON DEVICES (EDM)

the time of the execution one iteration of the control loop. In

this program, it takes 100 milliseconds. Then a timeout is 10

tacts, regardless of whether there were hands or not.

III. REQUIREMENTS FOR THE PROGRAM

We verify the following 5 requirements for the hand

dryer control program HandDryerController:

1. The fan heater should turn on in a reasonable time

(e.g. 0.2 seconds) after detecting hands.

2. The fan heater never turns on spontaneously (If

there are no hands and the fan heater is not turned on, it

will not turn on until the hands appear).

3. If the hands are removed, the fan heater will turn

off after no more than 1 second, if the hands do not

reappear during this time.

4. If there are hands and the fan heater is turned on, it

will not turn off.

5. The time of uninterrupted functioning of the fan

heater is not more than an hour.

Note that the first four requirements are satisfied by the

program, and the fifth is not. Non-satisfiability of the fifth

requirements makes us to try the Coq on a negative

example.

IV. FORMAL ANNOTATIONS

In the two-step method [6], the requirements are

formalized as three annotations, which are formulas of the

many-sorted predicate logic. The first annotation gives

restrictions on the initial values of program variables at the

beginning of the first loop of the control system. The second

annotation formulates restrictions on changing the input

variables of the program by the environment (in particular,

by the controlled object). The third annotation defines a

condition that is true at each entering the control loop,

before the input variables are changed by the environment

(in particular, the control object). It is called the invariant of

the control loop. In our case, only the loop invariant is used,

because there are no restrictions on the single input variable

hands (hands can appear at any time), and the initial values

are explicitly assigned during the program initialization. For

each requirement of number i, the control loop invariant inv

is the conjunction inv_i & & extraInv. The first conjunct is a

formal description of the corresponding requirement, and

the second describes invariant, the same for all

requirements. For example, for the first requirement, the

conjunct inv_1 is: forall i (0<i && i<=timer-1 &&

hands[i-1] = OFF && hands[i] = ON => exists j (i <= j

&& j <= i+1 && (forall k (i <= k && k < j => dryer[k] =

OFF && hands[k+1] = ON)) && dryer[j] = ON)).

V. RESULT OF THE TRANSFORMATION OF THE REFLEX

PROGRAM INTO THE C PROGRAM

The annotated HandDryerController program after

transformation to the C program looks as follows:
define tact 100

define ON true

define OFF false

define stopState 0

define errorState 1

define ctrlWaiting 2

define ctrlDrying 3

int timer;

int ctrlState[];

int ctrlTimer;

bool hands[];

bool dryer[];

inline void init () {

 cycleNumber = 0;

 timer = 0;

 ctrlTimer = 0;

 ctrlState[0] = ctrlWaiting;

 hands[0] = OFF;

 dryer[0] = OFF;

}

inline void ctrl_exec () {

 switch(ctrlState[timer]) {

 case ctrlWaiting:

 if (hands[timer] == ON) {

 dryer[timer] = ON;

 ctrlTimer = 0;

 ctrlState[timer] = ctrlDrying;

 }

 else dryer[timer] = OFF;

 break;

 case ctrlDrying:

 if (hands[timer] == ON) {

 ctrlTimer = 0;

 ctrlState[timer] = ctrlDrying;

 }

 If (ctrlTimer >= 10) {

 ctrlTimer = 0;

 ctrlState[timer] = ctrlWaiting;

 }

 break;

 default: unreachable;

 }

}

void main () {

 init();

 for (;;) {

 invariant inv(hands, dryer,

 ctrlState, ctrlTimer, timer);

 timer = timer + 1;

 ctrlTimer = ctrlTimer + 1;

 ctrlState[timer]=ctrlState[timer-1];

 dryer[timer] = dryer[timer - 1];

 havoc hands[timer];

 ctrl_exec();

 }

}

The result has the syntax and semantics of a C program,

except for two things. First, arrays are considered infinite

and dynamic, i.e. extensible when assignment is performed.

Second, the new havoc a[i] instruction is used. It means

assigning an arbitrary value to an array a at index i. This

instruction simulates how the environment updates the

variables’ values of the Reflex program.

In the C program, the macro definition tact corresponds

to the tact construction in the Reflex program. The Reflex

program constants are replaced with the corresponding

macro definitions. Other macro definitions encode process

states. The macro definitions stopState and errorState

encode the stop and error states, ctrlWaiting and ctrlDrying

encode the waiting and drying states, respectively.

2021 22nd INTERNATIONAL CONFERENCE OF YOUNG PROFESSIONALS IN MICRO- AND NANOTECHNOLOGIES AND ELECTRON DEVICES (EDM)

The variable timer corresponds to the global timer. The

ctrlState array specifies the states of the process Ctrl, and

the variable ctrlTimer specifies the local timer. Next, the

arrays hands and dryer are declared, corresponding to the

variables in the Reflex program.

The function init initializes the process. It sets the value

0 for the global timer and the local timer of process Ctrl,

sets the process Ctrl to the initial state waiting, and assigns

the initial values OFF to the Reflex variables hands and

dryer.

The function ctrl_exec defines the actions of the process

Ctrl in the control loop. It is the switch statement containing

two labels ctrlWaiting and ctrlDrying macro constants

corresponding to all the states (waiting and drying) defined

in the Reflex program for the process Ctrl. Instructions

mapped to labels correspond to the Reflex program

statements in the states that are encoded by these labels. The

ctrlWaiting label is matched with the operator if

(hands[timer]==ON) (the current value of the variable

hands is checked). If hands is set to ON, the current value of

the variable dryer is set to ON, the local timer of the process

Ctrl is reset, and the process enters the drying state. If the

current value of hands is not ON, the current value of dryer

is set to OFF. The ctrlDrying label is matched with the

sequential execution of two conditional statements. First, the

current value of hands is checked, and if it is ON, the local

timer is reset and the process is set to the drying state, which

corresponds to the reset of the timeout. Then it checks the

value of the local timer, and if ctrlTimer>=10, the local

timer is reset and the process enters the waiting state, which

corresponds to the timeout being triggered.

In the function main corresponding to the program

execution, initialization is performed first, and then an

infinite loop is executed. The loop body begins with the

invariant annotator, which specifies that the loop invariant

should be true at this point in the program. Next, the values

of the global timer and the local timer of the process Ctrl are

increased. Then the current state and the value of the

variable dryer are set to the previous ones (the states of the

processes and the values of the variables do not change after

the global timer is incremented), the input variable hands is

assigned an arbitrary value and the process Ctrl is executed.

In the next section, we describe the verification

conditions generated for this C program.

VI. VERIFICATION CONDITIONS

The algorithm for generating verification conditions in

the two-step method is based on the computation of the

strongest postcondition [9]. It generates the representation of

the symbolic execution of the program along all paths.

There are 8 paths in the HandDryerController program.

Thus, 8 verification conditions are generated for each

requirement. The total number of verification conditions for

all 5 requirements is 40. For example, the verification

condition for the path from the loop invariant to the loop

invariant (one iteration of the control loop) in the case when

the process Ctrl of program HandDryerController at time

timer is in the waiting state (ctrlState[timer] = ctrlWaiting)

and hands appear (hands[timer] == ON), has the form:

inv(hands0, dryer0, ctrlState0, ctrlTimer0, timer0) &&

ctrlState0[timer0] = ctrlWaiting &&

hands0[timer0] == ON &&

dryer1 = upd(dryer0, timer0, ON) && ctrlTimer1 = 0 &&

ctrlState1 = upd(ctrlState0, timer0, ctrlDrying) &&

timer1 = timer0 + 1 && ctrlTimer2 = ctrlTimer1 + 1 &&

ctrlState2=upd(ctrlState1, timer1, ctrlState1[timer1-1]) &&

dryer2 = upd(dryer1, timer1, dryer0[timer1-1]) &&

hands1 = upd(hands0, timer1, logvar2) =>

inv(hands1, dryer2, ctrlState2, ctrlTimer2, timer1).

VII. PROVING VERIFICATION CONDITIONS IN COQ PROOF

ASSISTANT

For proving the verification conditions in Coq, we define

the following theory describing their content. The basic

theory contains the definitions of the constants ON, OFF,

stopState, errorState, ctrlWaiting and ctrlDrying, the

declarations for the variables hands0, hands1, dryer0,

dryer1, ctrlState0, ctrlState1, ctrlTimer0, ctrlTimer1,

timer0, timer1, dryer2, ctrlState2, ctrlTimer2 used in the

verification conditions, and axioms postulating that the

arrays hands0, dryer0, ctrlState0 are infinite. In [10], we

give these formal annotations and verification conditions in

the language of the Coq proof assistant. The verification

conditions are formulated as theorems. Let us give theorem

corresponding to the verification condition presented in

section VI:

Theorem proof1_2:

(startnewloop hands0 hands1 dryer0 dryer1 ctrlState0

ctrlState1 ctrlTimer0 ctrlTimer1 timer0 timer1) /\ cond2 ->

(inv hands1 dryer2 ctrlState2 ctrlTimer2 timer1).,

where cond2 is defined as follows:

Definition cond2 :=

ctrlState1.[of_Z timer1] = ctrlWaiting /\

 hands1.[of_Z timer1] = ON /\

dryer2 = dryer1.[of_Z timer1 <- ON] /\ ctrlTimer2 = 0 /\

ctrlState2 = ctrlState1.[of_Z timer1 <- ctrlDrying].

The conjuncts propInv in the loop invariant is:

forall i, (0 < i /\ i <= t ->

(P hands dryer ctrlState ctrlTimer timer i)).

To prove the requirement, we analyze the cases (i < t)

and (i = t). To do this, we use the tactic elim with the lemma

Zle_lt_or_eq from the standard library ZArith. The proofs

for the case (i < t) follows the invariant for the previous

iteration of the loop. They can be done in a similar way for

all the requirements and verification conditions. We prove

the theorem startnewloop_to_propInv for each requirement.

This theorem is used for partially automatization of proving

the conjunct propInv for the case (i < t).

Requirements 1, 3, and 5 for the program

HandDryerController define its temporal properties. Hence,

proving by induction is necessary for several verification

conditions of these requirements. In particular, induction is

used to prove the verification conditions 2, 3, 5, and 7 for

the third requirement. We use the following approach to

prove by induction. We define the predicate which is proved

by induction on the last argument. For the third requirement,

it has the form:

Definition ind_prove_pred (dryer : array bool) (x y l : Z) :

Prop :=

(forall k, (x <= k /\ k < l -> dryer.[of_Z k] = ON /\

hands1.[of_Z k] = OFF)) ->

exists j (l<= j /\ j <= y /\

 (forall k, (x<= k /\ k < j -> dryer.[of_Z k] = ON /\

hands1.[of_Z k]=OFF)) /\

2021 22nd INTERNATIONAL CONFERENCE OF YOUNG PROFESSIONALS IN MICRO- AND NANOTECHNOLOGIES AND ELECTRON DEVICES (EDM)

 (dryer.[of_Z j] = OFF \/ hands1.[of_Z j] = ON)).,

where x = i, y = i + (11 - 1).

It is an implication. For l = 0, the right part of this

implication matches the goal, and the left part is true. The

value l = y is used as the base of the induction. Step of

induction: if the predicate is true for l=y0, then it will be

true for l = (Z. pred y0) (Z. pred y0 — the previous number

for y0). To do this, we proved our inductive scheme based

on the natlike_ind inductive scheme from the ZArith library.

To prove that the fifth requirement is not satisfied, we

use the following approach. The values of variables for

which the negation of some verification condition is true

were determined. We prove that this requirement is not

satisfied for paths in the program corresponding to

verification conditions 2, 5, 6 and 7.

For arrays in Coq, we use the standard library

Coq.Array.pArray. It contains functions make, get and set a

value by index and computing the length of the array and

axioms for these functions. We use the following functions

and notations to prove the verification conditions:

 t.[i] — the i-th element of the array t

 t.[i <- a] - the array obtained from t by replacing

the value of the i-th element with a

 length t — the length of the array t
When falsifying the fifth requirement, we use the make

function to construct counterexamples of arrays. The make

function allows defining arrays with elements equal to the

same value. But we also need arrays with element values

depend on the indexes. To define such arrays, we create a

function that requires a function f of type Z->bool, an

integer n of type Z and a proof that 0<=n<=max_length and

we define a bool array, such that its length is n and the value

of the element at index i is equal to (f i) for all i, such that

0<=i<=n.

For array indexes, Coq uses the type int. But formulas

contain comparisons and arithmetic addition and

subtraction. The standard Coq library defines lemmas for

these operations on types, such as nat (natural numbers) and

Z (integers). Since the Coq standard library has the function

of_Z for translating Z to int, the timer and ctrlTimer

variables have the type Z.

The not_true_is_false lemma is also used to prove that

the value is OFF if it is not ON, and the negb_true_iff,

negb_false_iff, andb_true_iff, and andb_false_iff lemmas

are used to prove the properties of the hands0 array, for

which the fifth requirement is not satisfied. These lemmas

are defined in the library Coq.Bool.Bool.

All 32 verification conditions for the first four

requirements have been proven. Hence, we consider the

hand dryer program to be correct with respect to these

requirements. We also falsify the fifth requirement by

proving the negations of its verification conditions. The Coq

code of all proofs is given in [10].

VIII. CONCLUSION

In this paper, we present the experiments on proving the

verification conditions generated within the framework of

the two-step method of deductive verification of process-

oriented programs in Coq proof assistant. The experiments

have shown that the Coq proof assistant is more powerful

for proving the verification conditions of process-oriented

programs compared to the previously used SMT solver Z3.

The formulated requirements for the hand dryer control

program and the generated verification conditions are

typical for a wide class of process-oriented control

programs. Hence, we consider the combination of the two-

step method of deductive verification for process-oriented

programs with the Coq proof assistant can be successfully

used in the practical formal verification of such control

programs.

In this example, the verification conditions were built

manually, and the simplification of this process was

achieved only by introducing notation for subformulas. To

verify more complex Reflex programs, it is planned to

develop a tool generating verification conditions in the Coq

format for annotated Reflex programs.

REFERENCES

[1] Zyubin, V.E. “Hyper-automaton: A Model of Control Algorithms,” in
Proceedings of the IEEE Intern. Siberian Conf. on Control and
Communications (SIBCON-2007), 2007, pp. 51-57.

[2] Liakh T.V., Rozov A.S., and Zyubin V.E., “Reflex Language: a
Practical Notation for Cyber-Physical Systems,” J. System
Informatics, 12(4), pp. 85-104, 2018.

[3] Pedersen Notander J., Höst M., Runeson P., “Challenges in Flexible
Safety-Critical Software Development – An Industrial Qualitative
Survey,” Lecture Notes in Computer Science, 7983, pp. 283-297,
2013.

[4] Leveson N., Engineering a safer world: systems thinking applied to
safety, MIT Press, Cambridge, 2011.

[5] Hähnle, R. and Huisman, M. “Deductive Software Verification: From
Pen-and-Paper Proofs to Industrial Tools,” Lecture Notes in
Computer Science, 10000, pp. 345-373, 2019.

[6] Anureev I. Garanina N.O., Liakh T.V., Rozov A.S., Zyubin V.E., and
Gorlatch S.P., “Two-Step Deductive Verification of Control Software
Using Reflex,” [J. Programming and Computer Software, 46(4), pp.
261-272, 2020].

[7] Z3 API in Python, https://ericpony.github.io/z3py-tutorial/guide-
examples.htm. Last accessed 26 Dec 2020.

[8] The Coq Proof Assistant, https://coq.inria.fr/. Last accessed 26 Dec
2020.

[9] Dijkstra, E.W. and Schölten, C.S. Predicate Calculus and Program
Semantics, Texts and Monographs in Computer Science. Springer,
New York, 1990.

[10] Proving verification conditions,
https://github.com/ivchernenko/HandDryerController-proofs. Last
accessed 20 Feb 2021.

