ИСПОЛЬЗОВАНИЕ ЛОКАЛЬНОЙ СИСТЕМЫ НАВИГАЦИИ И СИСТЕМЫ ТЕХ-НИЧЕСКОГО ЗРЕНИЯ ДЛЯ ОЦЕНКИ КООРДИНАТ МОБИЛЬНОГО РОБОТА

К.Ю. Котов, А.С. Мальцев, М.А. Соболев, М.Н. Филиппов

Институт автоматики и электрометрии СО РАН, г. Новосибирск kotov@idisys.iae.nsk.su, alexandr@idisys.iae.nsk.su

Ключевые слова: система навигации, инерциальная система, акселерометр, фильтр Калмана

Аннотация

Предложенная ранее система навигации для автономного мобильного робота дополнена использованием данных от инерциальных датчиков. Алгоритм оценивания координат автономного мобильного робота основан на совместном использовании локальной системы навигации и системы технического зрения. В работе приведены результаты экспериментов с мобильным роботом е-риск, подтверждающие эффективность предложенного подхода.

Введение

В последние десятилетия проявляется значительный интерес в области управления автономными мобильными роботами, область применения которых может включать в себя исследование, разведку или выполнение другой задачи в труднодоступной или неизвестной среде. На сегодняшний день задача локализации или определения пространственного положения является одной из основных решаемых задач в навигационной системе автономного мобильного робота. Методы решения задачи локализации включают в себя использование различной доступной информации: от системы одометрии робота [6] и гиро/инерциальных датчиков [9], дальнометрической информации от ультразвуковых и лазерных датчиков [7, 8], оценку абсолютных координат по активным маякам или специальным меткам [4] и дальнейшее комплексирование данных с помощью фильтра Калмана.

В работе [3] предложен алгоритм оценивания координат робота по моноизображениям отдельных меток, получаемым последовательно во время движения с помощью видеокамеры, жестко закрепленной на роботе. В данной работе предложенная система навигации дополнена использованием информации от инерциальных датчиков, позволяющей осуществлять коррекцию смещения робота, вызванного проскальзыванием колес и неровностями поверхности. Приведены результаты экспериментов с мобильным роботом *e-puck*, подтверждающие эффективность предложенного подхода.

1. Описание объекта управления

В качестве объекта управления используется мобильный робот *e-puck*, разработанный в университете EPFL, Швейцария и предназначенный для исследовательских и образовательных целей [10]. Этот двухколесный робот представляет собой платформу с независимыми приводами колес, где каждый привод является парой «шаговый двигатель — редуктор». Робот оснащен микроконтроллером и сигнальным процессором, позволяющими вести обработку информации, получаемой от различных датчиков: видеокамеры, инфракрасных датчиков дальности, датчика ускорения, микрофонов для локализации источника звука и выдавать управляющие команды на исполнительные устройства — приводы колес, светодиоды и динамический громкоговоритель для светозвуковой коммуникации и индикации состояния, рис. 1а. Коммуникация робота с внешним компьютером может осуществляться посредством беспроводной связи (Bluetooth) или через проводное соединение (RS232).

Уравнения кинематического и упрощенного динамического описания робота имеют следующий вид [1]:

(1)
$$\begin{cases} \dot{x} = \upsilon \cdot \sin \varphi; \\ \dot{y} = \upsilon \cdot \cos \varphi; \\ \dot{\varphi} = \omega; \end{cases}$$
$$\upsilon = \frac{1}{2a_0} (U_1 + U_2); \\ \omega = \frac{1}{2a_0 l} (U_1 - U_2), \end{cases}$$

где x, y — координаты объекта на плоскости, v, ω — линейная и угловая скорость объекта ($0 \le v \le v_{max}, -\omega_{max} \le \omega \le \omega_{max}$), φ — угол, характеризующий направление движения объекта относительно оси ординат, $a_0 = nc/r$, где n — передаточное число редуктора, c — коэффициент электромеханического взаимодействия, r — радиус колес, l — половина расстояния между колёсами. На рис. 16 приведено схематическое изображение робота с учетом принятых обозначений. Управляющими воздействиями являются сторонние ЭДС U_1 , U_2 , приложенные к электродвигателям, $|U_{1,2}| \le U_{max}$.

Puc. 1. Мобильный робот e-puck

Значительный объём информации от датчиков при данной конфигурации программноаппаратного обеспечения, в частности системы связи, приводит к заметной временной задержке в передаче данных от робота к компьютеру. Это приводит к снижению точности аппроксимации траектории движения робота с привлечением информации о величине угла поворота шагового двигателя каждого колеса [3]. Для получения требуемой точности аппроксимации целесообразно использовать модель (1), рассогласование которой с одометрией робота не превышает погрешности в определении координат объекта, получаемых с помощью видеокамеры [1].

2. Система технического зрения

2.1 Описание системы

В качестве системы технического зрения используется жестко закрепленная в передней части мобильной платформы видеокамера [10], позволяющая обнаруживать специальные навигационные метки на местности, относительно которых определяются абсолютные координаты робота, и корректируется его траектория движения. Для определения абсолютных координат меток используется та же видеосистема, что и для получения абсолютных координат робота [3].

Обработка изображения с видеокамеры робота включает в себя монохромизацию, пороговую обработку и определение положения робота относительно навигационной метки, заданного углом направления α на метку относительно курсового угла φ и расстоянием d до метки. На рис. 2а показано положение робота относительно метки.

Рис. 2. а) Положение робота относительно навигационной метки; б) Траектории движения робота:1 – траектория модели (1), 2 – траектория модели (1) после поворота на угол θ, 3 – траектория по данным измерений от меток (2).

При известных абсолютных координатах (x_b, y_b) обнаруженной метки и измеренных параметрах *a*, *d* мы можем вычислить абсолютные координаты (x, y) положения робота при известном курсовом угле φ :

(2) $\begin{cases} x = x_b + d_b \cdot \sin(\varphi + \alpha_b + \pi); \\ y = y_b + d_b \cdot \cos(\varphi + \alpha_b + \pi). \end{cases}$

2.2. Алгоритм оценки абсолютных координат робота по меткам

Будем полагать, что за некоторое время движения по предписанной траектории робот получает N измерений (изображений с видеокамеры) от L меток ($N \ge L$), и траектория движения робота на интервале времени набора измерений является достаточно гладкой для обеспечения малого влияния эффектов, связанных с проскальзыванием колес. Тогда можно считать, что траектория модели (1) имеет некоторое смещение Δx , Δy и поворот на угол θ относительно истинной (измеренной) траектории движения, рис. 26.

После поворота на угол θ относительно начала координат и смещения на Δx , Δy траектория модели (1) и траектория (2), полученная по данным измерений от меток, должны совпадать с некоторой погрешностью, определяемой эффектами проскальзывания колес и шумами измерений:

(3)
$$\begin{cases} \Delta x + x_{mi} \cos \theta + y_{mi} \sin \theta \approx x_{bl} + d_{bli} \sin(\varphi_{mi} + \theta + \alpha_{bli} + \pi) \\ \Delta y - x_{mi} \sin \theta + y_{mi} \cos \theta \approx y_{bl} + d_{bli} \cos(\varphi_{mi} + \theta + \alpha_{bli} + \pi), \quad i = 1, ..., N, \quad l = 1, ..., L. \end{cases}$$

Здесь (x_{mi} , y_{mi} , φ_{mi}) – координаты модели (1), соответствующие моменту времени *i*-го измерения параметров α_{bli} , d_{bli} для метки с индексом *l*. Угол поворота θ входит в правую часть (3), так как $\varphi_i = \varphi_{mi} + \theta$ в (2). Соотношения (3) образуют систему нелинейных уравнений, позволяющих вычислить координаты *x*, *y*, φ истинного положения робота, для решения которой можно выполнить линеаризацию либо минимизировать следующее выражение:

(4)
$$f = \sum_{i=1}^{N} w_i [Y_{Li} - Y_{Ri}]^2$$

где Y_{Li} , Y_{Ri} - векторы, соответствующие левой и правой части уравнения (3); w_i - весовой коэффициент, приписываемый измерению *i*. После нахождения величин Δx , Δy , θ вычислим абсолютные координаты робота, соответствующие моменту времени последнего измерения:

(5) $\begin{cases} x = \Delta x + x_{mN} \cos \theta + y_{mN} \sin \theta; \\ y = \Delta y - x_{mN} \sin \theta + y_{mN} \cos \theta; \\ \varphi = \varphi_{mN} + \theta. \end{cases}$

3. Инерциальная система

3.1. Описание и характеристики чувствительного элемента

Инерциальным датчиком робота является микромеханический 3D акселерометр MMA7260Q с чувствительностью около 800 мB/g в рабочем диапазоне ± 1.5 g, шумом 4.7 мB и полосой пропускания 6кГц по осям XY. Ось У акселерометра совмещена с продольной осью робота, рис. За. На рис. Зб представлены временные зависимости величин ускорений по соответствующим осям датчика во время прямолинейного движения робота с последовательным ускорением. Команды на установление значений линейной скорости робота 1.30 см/с, 3.91 см/с, 9.13 см/с подавались в моменты времени 0.0 с, 0.1 с, 0.2 с, соответственно. Из графиков отчетливо заметно влияние работы шаговых двигателей, т. е. разгона и торможения на каждом шаге привода, на величину ускорения в виде периодических колебаний. На движение робота данный эффект не оказывает влияния, поскольку для данных частот (скоростей вращения приводов) робот выступает низкочастотным фильтром, однако выступает дополнительным источником погрешности в оценке положения робота. Исходя из этого, выходные сигналы акселерометра целесообразно пропустить через фильтр нижних частот, рис. 36.

Рис. 3. Движение робота при продольном проскальзывании (а); измеренные и отфильтрованные выходные сигналы акселерометра (б).

3.2 Коррекция движения робота

Наличие на мобильной платформе *e-puck* инерциального датчика позволяет оценить только продольное проскальзывание. Проскальзывание приводит к вращению мобильного робота относительно некоторой неподвижной точки, рис. За. Коррекция смещения робота во время проскальзывания колес выполняется при превышении некоторой пороговой величины ускорения на выходе датчика. Начиная с этого момента времени, записанные и отфильтрованные *K* отсчетов величин ускорений используются для вычисления угла поворота робота:

(6)
$$\varphi_n = \varphi_0 + \sum_{i=1}^n \frac{a_{xi}}{V_i} \delta t$$
,

где

(7)
$$V_i = v_0 + \sum_{k=1}^{i} a_{yk} \delta t$$
,

 v_{0} , φ_{0} – линейная скорость и курс робота до начала коррекции, соответственно; a_{xi} , y_{yk} – нормальная и тангенциальная составляющие ускорения движения робота, соответственно; δt – шаг квантования по времени оцифрованных сигналов датчика; n=1,...,K.

Координаты *x*, *y* положения робота вычисляются путем подстановки значений курсового угла φ_n и скорости V_i в кинематические соотношения модели (1).

4. Комплексирование данных с использованием фильтра Калмана

Для комплексирования данных программной модели (1) и оценки (5), (6) положения робота воспользуемся рекурсивным фильтром Калмана. Исходную модель объекта управления (1) представим в виде:

(8)
$$\begin{cases} q^{k+1} = f(q^{k}, u^{k}) + \omega^{k}, \\ \hat{q}^{k} = q^{k} + \upsilon^{k}, \end{cases}$$

где $q^k = [x^k, y^k, \varphi^k]^T$, $u^k = [U_1^k, U_2^k]^T$ — векторы положения робота и управляющих воздействий в момент времени $k\Delta t$, Δt — шаг квантования по времени модели (1); ω^k — нормальный случайный процесс, описывающий погрешности моделирования, с нулевым средним и ковариационной матрицей Q^k ; v^k — белый гауссовский шум измерений с нулевым средним и ковариационной матрицей R^k ; \hat{q}^k — выход датчиков измерения состояния q^k объекта, т. е. оценка (5), (6).

Модель (8) является нелинейной, поэтому применим расширенный фильтр Калмана (РФК), где модель линеаризуется в некоторой окрестности рабочей точки (\hat{q}_{ekf}^k , u^k) с помощью разложения в ряд Тейлора:

(9)
$$q^{k+1} \approx f(\hat{q}_{ekf}^k, u^k) + F^k \left[q^k - \hat{q}_{ekf}^k \right] + \omega^k,$$

rge
(10) $F^k = \frac{\partial f(q^k, u^k)}{\partial q^k} \bigg|_{q^k = \hat{q}_{ekf}^k}.$

Выражения экстраполяции и коррекции РФК имеют вид:

(11)
$$\hat{q}_{ekf}^{k+1} = f(\hat{q}_{ekf}^{k}, u^{k}),$$

(12) $P^{k+1} = F^{k} P^{k} (\hat{F})^{T} + Q^{k},$
(13) $K^{k} = \frac{P^{k}}{P^{k} + R^{k}},$
(14) $\hat{q}_{ekf}^{k+1} = \hat{q}_{ekf}^{k} + K^{k} [\hat{q}^{k} - \hat{q}_{ekf}^{k}],$
(15) $P^{k+1} = (I - K^{k})P^{k+1}.$

5. Результаты экспериментов

5.1 Коррекция движения робота с помощью локальной системы навигации На рис. 4а показано перемещение робота по прямоугольной траектории, вида:

(16)
$$\begin{cases} \dot{x}(t) = 0, \ \dot{y}(t) = v_0 & npu & 0 \le t < t_y; \\ \dot{x}(t) = v_0, \ \dot{y}(t) = 0 & npu & t_y \le t < t_y + t_x; \\ \dot{x}(t) = 0, \ \dot{y}(t) = -v_0 & npu & t_y + t_x \le t < 2t_y + t_x; \\ \dot{x}(t) = -v_0, \ \dot{y}(t) = 0 & npu & 2t_y + t_x \le t < 2(t_y + t_x), \\ \end{array}$$

$$\Gamma Ae \ v_0 = 10 \ cm/c, \ t_x = 5 \ c, \ t_y = 10 \ c.$$

Проскальзывание колес имитируется остановкой или изменением скорости одного из колес на время Δt . Общее число проскальзываний равно пяти. Проскальзывание осуществлялось в середине большей стороны прямоугольной траектории движения робота. На рис. 46 приведена временная зависимость курсового угла робота и скорректированное значение курсового угла модели (1). Отчетливо видно уменьшение рассогласования скорректированной траектории движения модели (1) с данными от системы получения абсолютных координат робота в моменты времени 40 с, 63 с, 90 с, 118 с, 138 с. На рис. 5 приведена величина ошибки навигации, которая определяется как геометрическое расстояние между точками траектории робота по данным видеосистемы и траектории по оценке координат РФК.

Рис. 4. Перемещение робота по прямоугольной траектории и траектория движения модели (а), курсовой угол модели по данным с видеокамеры и скорректированное значение угла (б) (б).

Рис. 5. Ошибка оценивания траектории.

5.2 Коррекция движения робота с помощью системы технического зрения

Для проверки эффективности предложенного метода проведён ряд экспериментов по управлению роботом при движении по траектории, заданной уравнением:

(17)
$$\begin{cases} x_0(t) = 17 + 12\sin\left(\frac{\pi}{60}t\right), \quad y_0(t) = 5 + 12\cos\left(\frac{\pi}{60}t\right), \quad \varphi_0(t) = \frac{\pi}{60}t + \frac{\pi}{2}, \quad \text{при } t < 60; \\ x_0(t) = 29 - 0.7t, \quad y_0(t) = 5, \quad \varphi_0(t) = \frac{3\pi}{2}, \quad \text{при } 60 \le t \le 94.3, \end{cases}$$

где x_0 , y_0 , φ_0 — координаты целевой точки. При движении робота по заданной траектории без коррекции его координат, только с использованием одометрии, возрастает отклонение робота от траектории движения, рис. 6а, 7а. Это объясняется наличием внешних возмущений при движении робота — проскальзывания колёс, неровностей поверхности и пр. Результаты экспери-

мента с введенной коррекцией координат робота по формулам (5), (7), (14) показаны на рис. 66, 76. Коррекция положения робота во время движения по заданной траектории осуществлялась по двум навигационным меткам с координатами $x_{b1} = 19.78$ см, $y_{b1} = 27.54$ см и $x_{b2} = 32.45$ см, $y_{b2} = 18.49$ см. Для случая движения робота без коррекции, навигационная ошибка определяется как геометрическое расстояние между точками траектории робота по данным внешней видеосистемы и траектории модели (1), полученными в один и тот же момент времени, рис. 7а. В случае движения робота с коррекцией, вычисляется ошибка между траекторией робота по данным видеосистемы и траекторией по оценке координат РФК, рис. 76. На графиках показано согласование оценки координат РФК и координат по данным видеосистемы в точках коррекции, а также отсутствие нарастания ошибки навигации.

Рис. 6. Перемещение робота по траектории, вида (16): а - без коррекции, б - с коррекцией

Рис.7. Ошибка навигации в зависимости от времени: а - без коррекции, б – с коррекцией

6. Заключение

Представлен алгоритм оценивания координат робота по моноизображениям от отдельных навигационных меток, получаемым во время движения с помощью жестко закрепленной на роботе видеокамеры. Алгоритм основан на комплексировании данных локальной системы

навигации и системы технического зрения робота с применением расширенного фильтра Калмана. Результаты экспериментов подтверждают эффективность предложенного подхода.

Литература

- Золотухин Ю.Н., Котов К.Ю., Мальцев А.С., Нестеров А.А. Управление траекторным движением группы мобильных роботов: моделирование и эксперимент // В кн. Материалы X Международной конференции "Актуальные проблемы электронного приборостроения (АПЭП-2010)", Новосибирск, с. 101-106, Россия: 2010.
- 2. Золотухин Ю.Н., Котов К.Ю., Нестеров А.А. Децентрализованное управление подвижными объектами в составе маневрирующей группы // Автометрия, №3, С. 31-39, 2007.
- Котов К.Ю., Мальцев А.С., Соболев М.А., Филиппов М.Н.. Совместное использование одометрии и системы технического зрения для оценки координат мобильного робота. // Труды XIII Международной конференции «Проблемы управления и моделирования в сложных системах», (15-17 июня 2011г., Самара, Россия). – Самара: Изд. Самарский научный центр РАН, 2011. С. 230-236.
- Платонова М.В. Использование шумоподобных сигналов ИК-диапазона для системы навигации мобильных роботов // Сб. Мобильные роботы и мехатронные системы, М.: Изд-во Моск. Ун-та, с. 148-155, 2009.
- 5. *Bloom B.C.* Use of Landmarks for Mobile Robot Navigation // SPIE vol. 579, Intelligent robot and Computer Vision, pp. 351-355, 1985.
- 6. *Crowley J.L.* Control of Translation and Rotation in a Robot Vechicle // In Proc. IEEE Conference on Robotics and Automation, May 1989.
- 7. *Harrison A., Newman P.* High Qualiti 3D Lazer Ranging Under General Vehicle Motion // In Proc. Of ICRA' 2008, pp. 7-12.
- Leonard J.J., Durrant-Whyte H.F. Simultaneous Map Building and Localization for an Autonomous Mobile Robot // IEEE/RSJ International Workshop on Intelligent Robots and Systems IROS '91. Nov. 3-5, 1991. Osaka, Japan, pp. 1442-1447.
- 9. *Martin S., Stefan J.* Proprioceptive Navigation, Slip Estimation and Slip Control for Autonomous Wheeled Mobile Robots // IEEE RAM, Bangkok, Thailand, pp. 109-114, 2006.
- 10. Mondada F., Bonani M., Raemy X., Pugh J., Cianci C., Klaptocz A., Magnenat S., Zufferey J.-C., Floreano D., Martinoli A. The e-puck, a Robot Designed for Education in Engineering // Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions, 1(1), pp. 59-65, 2009.