УДК 681:656.25

СТРУКТУРНАЯ ОРГАНИЗАЦИЯ УПРАВЛЯЮЩИХ АВТОМАТОВ ВЫЧИСЛИТЕЛЬНЫХ И ИНФОРМАЦИОННО-ИЗМЕРИТЕЛЬНЫХ СИСТЕМ

\odot Ю. Ф. Мухопад 1 , А. Ю. Мухопад 1 , Д. Ц. Пунсык-Намжилов 2 , А. С. Маниковский 3

¹ Иркутский государственный университет путей сообщения, 664074, г. Иркутск, ул. Чернышевского, 15

² ООО «Сибпроект», 634034, г. Томск, Советская, 99, кв. 98

³ Забайкальский институт железнодорожного транспорта, 672040, г. Чита, ул. Магистральная, 11

E-mail: bts48@mail.ru, jcmg@mail.ru, dablttf@mail.ru, andrey-18@mail.ru

В целях снижения сложности комбинационных схем предложена новая методология синтеза управляющих автоматов, основанная на вводе ограниченного числа пустых операторов в граф-схему управления, и три способа организации адресной подсистемы: через ввод счётчика состояний и унитарное кодирование, ввод в структуру управляющего автомата мультиплексора для выбора одного логического условия из всего множества $\{\alpha\}$ и ввод в схему управляющего автомата адресного блока из q двухвходовых элементов «И», одного «ИЛИ» и RS-триггера для выбора одного $\alpha_j \in \{\alpha\}$. Во всех вариантах реализации управляющих автоматов число входов в программируемую логическую матрицу уменьшается в 1,5–3 раза в зависимости от сложности алгоритма управления.

 ${\it Knove6ыe~c.no6a:}$ информационно-измерительные системы, управляющие автоматы, синтез автоматов.

DOI: 10.15372/AUT20210408

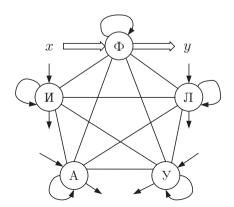
Введение. Автоматизированные вычислительные и информационно-измерительные системы составляют основу сложных кибернетических комплексов [1–4], поэтому управление ими реализуется через непростые процедуры, представленные граф-схемами алгоритмов (ГСА) управления. Уровень сложности таких систем не имеет количественного определения, но для управляющих автоматов (УА) в работе [5] предложена классификация на сверхпростые (СП), простые (ПА), средней сложности (СА), сложные (АС), высокой сложности (ВС), особо сложные (ОС) и ультрасложные (УС) автоматы. Классификация автоматов проведена по количеству разрядов (m) и количеству логических условий (q) $\alpha_1, \ldots, \alpha_q$ в табл. 1, где V — объём постоянного запоминающего устройства (ПЗУ), определяемый как $V = m_p 2^{m+q}$, m_p — реальная разрядность типовой большой интегральной схемы (БИС) ПЗУ, равная 4 или 8. Характеристики W, Q, K будут определены далее.

В вычислительных и информационно-измерительных системах мехатроники, робототехники, транспортных средств, технологических комплексов используются в основном управляющие автоматы Мура и Мили [6–15]. Математическая запись функций управляющих автоматов Мура имеет вид

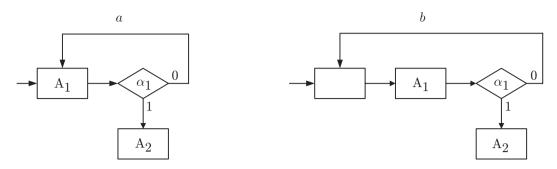
$$a(t+1) = F_1(a(t), \alpha_1, \dots, \alpha_q), \qquad A(t+1) = F_2(a(t)),$$

где a(t), a(t+1) — предыдущее и последующее состояния автомата; A(t+1) — исполняемая команда; F_1 — система булевых функций, определяющих переходы от a(t) к a(t+1); F_2 — функции формирования управляющих команд A_0, \ldots, A_k .

			•	-	·	-	·			
№	Тип	m	q	m+q	m_p	V	m+1	W	Q	K
1	СП	3	3	6	4	256	4	64	4	1,5
2	ПА	4	6	10	4	2 кб	5	256	8	2,0
3	CA	5	9	14	8	128 кб	6	512	256	2,3
4	AC	6	12	18	8	2 Мб	7	1 кб	$2 \cdot 10^{3}$	2,6
5	$_{\mathrm{BC}}$	7	15	22	8	32 Мб	8	2 кб	$1,6 \cdot 10^{4}$	2,7
6	OC	8	18	26	8	0,5 Гб	9	4 кб	$1.2 \cdot 10^5$	2,9
7	УС	9	21	30	12	12 Гб	10	12 кб	10^{6}	3


Таблица 1 **Х**арактеристики управляющих автоматов

Методология синтеза УА была определена в 1950 г. К середине 1990 гг. новые разработки были посвящены в основном реализации УА на программируемых логических интегральных схемах (ПЛИС), перестраиваемых матричных кристаллах (ПМК) и частично на программируемых логических матрицах (ПЛМ) [14, 15]. Далее будут использоваться только БИС ПЗУ и ПЛМ для сравнительного количественного анализа УА на структурном уровне. На функциональном уровне, кроме ПЛМ, необходимо рассматривать реализацию на ПЛИС и ПМК.


В существующей парадигме во всех известных решениях сокращение количества элементов схем переходов УА достигается через сокращение числа состояний a(t), декомпозицию граф-схем алгоритмов управления и минимизацию систем булевых функций. За все годы развития методологии синтеза достигалось обычно снижение аппаратной реализации УА до 1,2-1,5 раза, причём чем сложнее УА, тем меньше значение коэффициента снижения сложности. Для более высокого уровня минимизации необходимо изменить методологию синтеза УА [6-14].

Анализ управляющих автоматов с традиционным способом определения состояний. Перед анализом УА Мура и Мили целесообразно рассмотреть структурную организацию управляющих автоматов по модели сложной технической системы (СТС) [16], представленной в виде полного графа из пяти вершин (рис. 1), сопоставленных подсистемам: функциональной (Φ), информационной (Π), логической (Π), адресной (Π) и управляющей (Π). Входы Π и выходы Π СТС принадлежат подсистеме Π .

Для УА Мура имеем следующие назначения блоков: Φ — схема переходов F_1 ; И — регистры памяти; Л — устройства, определяющие значения логических условий; У — устройство формирования команд. Адресной (А) подсистемы в УА Мура нет, поэтому всё подмножество логических условий совместно с разрядами кода состояний определяет сложность функций F_1 .

Puc. 1. Пятиблоковая модель СТС

 $Puc.\ 2.$ Ликвидация петли в операторной схеме ГСА: a — схема с петлёй; b — ввод пустого оператора

При существующей методологии синтеза УА по ГСА определяется граф переходов от a(t) к a(t+1) с проверкой логических условий. Для УА Мура состояния соответствуют операторам действия A_0, \ldots, A_k , поэтому по графу переходов устанавливается объём ПЗУ программной реализации функций F_1 . При аппаратной реализации F_1 на ПЛМ число её входов $n \geqslant m+q$. Для сложных управляющих автоматов как V, так и n— немалые величины.

Для УА Мура функционально-тождественные преобразования ГСА осуществляются через ввод пустых операторов в следующих случаях: для ликвидации петель (рис. 2), если между α_i и α_j нет операторов действия, когда к логическому условию α_j передаётся управление от двух или более операторов, при ограничении числа входов операторов до двух.

Математическая запись функций нового УА, определённого по ГСА с пустыми операторами, будет иметь вид $a(t+1) = F_1(a(t), \alpha_i)$, $A(t) = F_2(a(t))$, $\alpha_i = F_3(a(t))$.

Предлагается унитарное кодирование состояний с применением второго дешифратора состояний. Так как после ввода пустых операторов подаётся только одно логическое условие на схему переходов, то в новом УА с унитарным кодированием целесообразно использовать счётчик вместо регистра памяти a(t).

Управляющий автомат с новой структурной организацией представлен на рис. 3: Rg — регистры памяти; F_1 — схема переходов; DC — дешифраторы состояний; ОУ — объект управления; & — элементы «И» для парафазной передачи кода a(t+1) на счётчик Сч, хранящий код a(t); БО — блок определения необходимости прибавления «1» к содержимому счётчика Сч через коэффициент (γ); БС — блок формирования сигналов синхронизации τ_1, \ldots, τ_k . Представленный на рис. 3 управляющий автомат отличается от УА Мура только использованием второго дешифратора для преобразования двоичного позиционного кода в унитарный код. Этот вариант реализации является фактически новым УА, так как функция F_1 сформирована по ГСА с вводом пустых операторов, тогда при (m+q)-входах на F_1 потребуется использовать только часть из 2^{m+q} выходов DC.

Система булевых функций F_1 и функция определения γ представлены следующими уравнениями:

$$y_1 = \bar{\alpha}_5 a_{10} + \alpha_6 a_{11} + a_{13} + a_{16}, \quad y_2 = \bar{\alpha}_1 a_2 + a_{13} + a_{14}, \quad y_3 = \bar{\alpha}_1 a_2 + \bar{\alpha}_6 a_{11} + a_{14},$$

$$y_4 = \bar{\alpha}_1 a_2 + \bar{\alpha}_5 a_{10} + \bar{\alpha}_6 a_{11} + a_{13}, \quad y_5 = \bar{\beta}_4 a_8.$$

Для упрощения вычисления коэффициента γ целесообразно все $\bar{\alpha}_j$ заменить обозначением β_j в переходах со счётчиком, тогда функция γ определяется как логическая сумма всех состояний УА, относящихся к счётчику, а схема F_1 будет реализовывать только переходы вне счётчика: $\gamma = \alpha(a_0 + \ldots + a_{11}) = \bar{y}_4 + \bar{y}_3$.

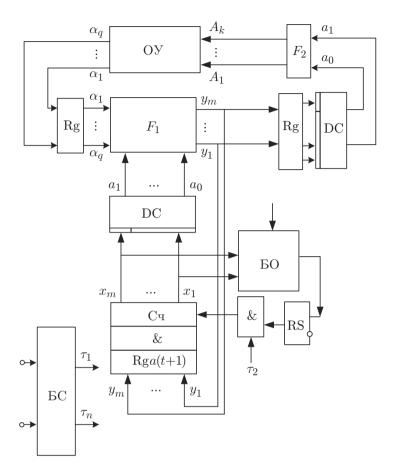


Рис. 3. Структурная схема УА с унитарным кодированием и счётчиком состояний

Для реализации уравнений потребуется всего 4 двухвходовых элемента «И» и 10 двухвходовых элементов «ИЛИ».

Упрощение реализации нового УА получено благодаря преобразованиям: модификации ГСА за счёт ввода пустых операторов (An); использованию унитарного кодирования; применению счётчика состояний a(t). Унитарное кодирование использовалось только для УА без логических условий [6]. В предлагаемом варианте нового УА Мура ограничения на количество логических условий q отсутствуют.

Управляющие автоматы с новой структурной организацией. В [17] определена новая структурная организация УА с адресной подсистемой в виде мультиплексора, третьей комбинационной схемы и регистра для определения и фиксации адреса логического условия при выборе одного $\alpha_i \in \{\alpha\}$.

Для определения адреса мультиплексора, задающего адрес z_1,\ldots,z_r логического условия $\alpha_j\in\{\alpha\}$, достаточно использовать только код y_1,\ldots,y_m состояния a(t) без учёта значений логических условий.

Так как в новом варианте реализации УА используется только одно значение $\alpha_j \in \{\alpha\}$ в схеме F_1 , то её новый объём $W=m_p2^{m+1}$. Эффективность снижения затрат на реализацию схемы переходов определяется коэффициентом $Q=V/W=2^{q-1}$. Количество входов ПЛМ n при аппаратной реализации УА снижается в K раз, где K=(m+q)/(m+1). Для всех типов УА даны значения Q,K,W в табл. 1. Как видно, новый управляющий автомат существенно превосходит УА Мура по эффективности, определяемой коэффициентами Q и K.

Благодаря оригинальной структурной организации и высокой эффективности нового

УА по аналогии с УА из [6–14] предложенному автомату присвоено собственное имя — автомат Мухопада.

Таким образом, переход от существующей парадигмы синтеза УА к новой парадигме (стратегии), основанной на целенаправленном увеличении числа состояний, обеспечивает создание высокоэффективных автоматов нового типа.

Управляющие автоматы с новым определением состояний. Управляющий автомат Мухопада оригинален по структурной организации [17]: его эффективность достигнута за счёт увеличения количества блоков и связей при сохранении представления состояний a(t) через операторы действия A_0, \ldots, A_k .

В [18] предложен принципиально новый метод определения состояний УА за счёт разметки входов как операторов действия, так и логических условий. В [19] представлена новая организация УА с меньшими затратами оборудования, достигнутыми при новом определении состояний УА.

Соответствующий вариант реализации УА представлен на рис. 4: AB — адресный блок из q двухвходовых элементов «И», одного «ИЛИ» и RS-триггера; BA — блок анализа определения принадлежности выхода дешифратора состояний DC к $\{\alpha\}$; выход BA

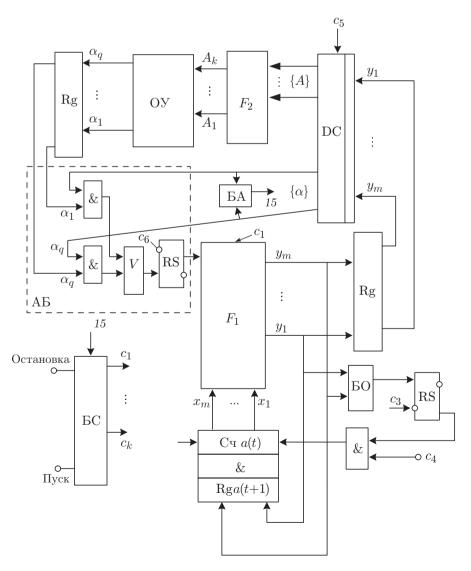


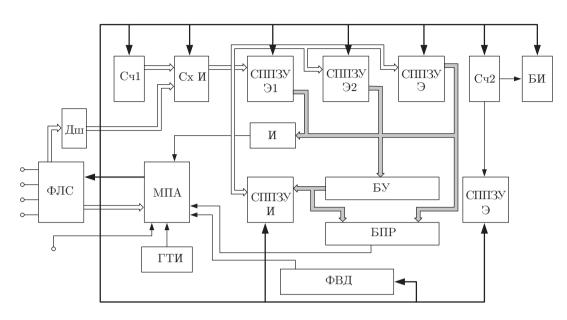
Рис. 4. Структурная схема нового управляющего автомата Мухопада

является дополнительным входом блока синхронизации БС. Выходы дешифратора DC разделены теперь на два непересекающихся подмножества: для выбора $\{\alpha\}$ и управляющих команд $\{A\}$. При этом в такой реализации УА может формировать сигналы управления как в режиме УА Мура, так и в режиме УА Мили только при одной схеме переходов F_1 , а не при двух схемах, как в УА Мили.

В режиме УА Мили обеспечивается более высокий уровень быстродействия при переходах от a(t) к a(t+1) за счёт выбора $\{\alpha\}$ без выдержки времени T, так как переход реализуется за время сигнала $\tau \ll T$ и нет необходимости задержки исполнения команд на время T, если состояния УА соответствуют выбору $\alpha_i \in \{\alpha\}$.

На рис. 5 представлен пример реального варианта информационно-измерительной системы [20] в виде комплекса блоков контроля и диагностики ПЗУ с ультрафиолетовым или электрическим стиранием информации. Структура и функционирование такой системы описаны в [21]: Дш — дешифратор; Сх И — многоразрядная схема «И» (схемы «И»); ФЛС — формирователь логических сигналов; Сч — счётчик; БУ — буферное устройство; БПР — блок принятия решения; БИ — блок индикации; ГТИ — генератор тактовых импульсов; СППЗУ (Э $_i$) — эталонное ПЗУ с i-й программой контроля; СППЗУ (И) — испытуемое ПЗУ; ФВД — формирователь временных диаграмм; МПА — микропрограммный автомат.

Оригинальность реализации определяется двумя факторами: применением нескольких $\Pi 3 Y$ для контроля одного испытуемого $\Pi 3 Y$; использованием трёхуровневой управляющей подсистемы.


Управление информационно-измерительной системой реализуется системой взаимодействующих блоков: МПА, ФВД [22] и БУ. Граф-схема алгоритма управления для реализации БУ с разметкой состояний по новому принципу представлена на рис. 6. Описание всех операторов действия B_i , C_i и логических условий дано в работе [21] и здесь не приводится.

При реализации ГСА через программную версию УА Мура потребовалось бы ПЗУ блока БУ объёмом $V=m_p2^{m+q}=8\cdot 2^{6+12}=2$ Мб. При декомпозиции ГСА на 5 частей получаемое суммарное количество разрядов кода состояний m=10 и при 4 логических условиях в каждой части с $m_p=12$ объём ПЗУ блока БУ будет уменьшен в 64 раза. При реализации БУ как УА нового типа новый объём $W=8\cdot 2^{6+1}=1$ кб. По сравнению с УА Мура объём снижается не в 64, а в 10^6 раз; число входов ПЛМ при аппаратной реализации снизится в 2,7 раза, так как n=(m+q)/(m+1)=(6+12)/(6+1)=2,7.

В новом УА Мухопада потребовалась только одна схема F_1 с входной конкатенацией $(\alpha_j a(t))$ при работе как в режиме УА Мура, так и в режиме УА Мили вместо двух схем с конкатенацией $(\alpha_1, \ldots, \alpha_q \, a(t))$ в типовом УА Мили.

Дальнейший этап синтеза при известной структуре (см. рис. 3) и выбранной разметке состояний не имеет существенных особенностей по сравнению с известной методологией синтеза УА.

Варианты программной и аппаратной реализаций управляющего автомата с новым определением состояний на сегодня являются эффективными и простыми из всех известных управляющих автоматов и могут применяться как основа системы управления сложными техническими системами [23, 24].

Puc. 5. Структурная схема контроля ПЗУ

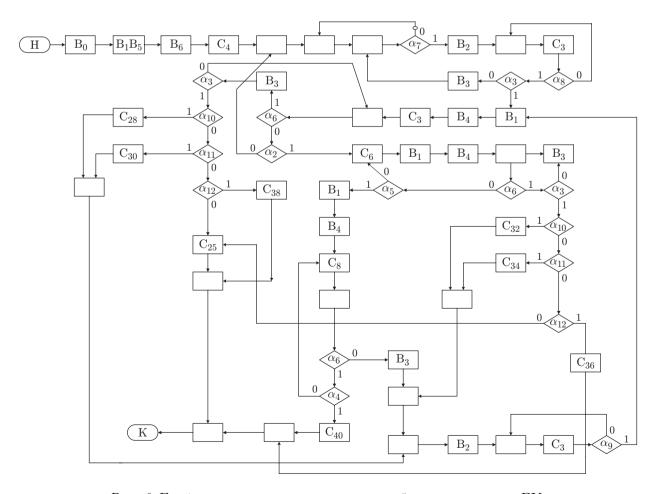


Рис. 6. Граф-схема алгоритма для синтеза блока управления БУ

Заключение. Проведён системный анализ автоматов Мура и Мили и показано, что сложность реализации комбинационной схемы переходов из предыдущего a(t) в последующее a(t+1) состояние определяется отсутствием адресной подсистемы. Новая методология синтеза управляющего автомата обусловливается тремя способами организации адресной подсистемы с целенаправленным увеличением количества состояний через ввод ограниченного числа пустых операторов:

- унитарное кодирование информации после преобразования граф-схемы алгоритмов;
- ввод в структуру управляющего автомата мультиплексора;
- ввод в схему управляющего автомата адресного блока из q двухвходовых элементов «И», одного «ИЛИ» и RS-триггера.

Целенаправленное увеличение количества состояний даёт возможность выбора одного (единственного) значения $\alpha_j \in \{\alpha\}$ и существенного уменьшения числа входов в комбинационной схеме переходов, обеспечивающего снижение её сложности в 2^{q-1} раз.

В третьей структуре УА выбор одного $\alpha_j \in \{\alpha\}$ осуществляется дешифратором состояний a(t), подмножество выходов $\{\alpha\}$ которого не зависит от подмножества выбора команд управления A_0, \ldots, A_k . Все три варианта позволяют реализовать УА с малыми затратами элементов схемы переходов, причём самым эффективным (по оценке затрат на схему переходов) и в то же время простым является третий вариант.

СПИСОК ЛИТЕРАТУРЫ

- 1. Новиков Д. А. Кибернетика // Проблемы управления. 2016. № 1. С. 73–81.
- 2. **Белоконь С. А.**, **Деришев Д. С.**, **Золотухин Ю. Н. и др.** Управление движением гибридного летательного аппарата в переходных режимах // Автометрия. 2019. **55**, № 4. С. 37–48. DOI: 10.15372/AUT20190405.
- 3. **Конюх В. Л.** Особенности управления подземными роботами // Автометрия. 2007. **43**, № 6. С. 116-127.
- 4. **Пасик В. Ш.** Имитационный метод для численного анализа систем управления с обратной связью // Автометрия. 1999. № 1. С. 100–104.
- 5. **Мухопад А. Ю.** Теория управляющих автоматов технических систем реального времени. Новосибирск: Наука, 2015. 176 с.
- 6. **Баркалов А. А., Титаренко Л. А.** Прикладная теория цифровых автоматов. Донецк: ДонНТУ, Технопарк ДонНТУ УНИТЕХ, 2013. 320 с.
- 7. **Лазарев В. Г., Пийль Е. И.** Синтез управляющих автоматов. М.: Энергоатомиздат, 1989. 328 с.
- 8. **Горбатов В. А., Горбатов А. В., Горбатова М. В.** Теория автоматов. М.: Астрель, 2008. 699 с.
- 9. Закревский А. Д., Поттосин Ю. В., Черемисинова Л. Д. Логические основы проектирования дискретных устройств. М.: Физматлит, 2007. 592 с.
- 10. **Кудрявцев В. Б., Алешин Ф. Б., Подколзин А. С.** Теория автоматов. М.: Юрайт, 2018. 320 с.
- 11. Ожиганов А. А. Теория автоматов. СПб.: НИУ ИТМО, 2013. 84 с.
- 12. **Ульман Д. Д., Мотвани Р., Хопкрофт Д.** Введение в теорию автоматов, языков и вычислений. М.: Вильямс, 2016. 528 с.
- 13. **Ubar R.** Design and Test Technology for Dependable Systems-on-Chip (Premier Reference Source) / R. Ubar, J. Raik, H.-T. Vierhaus. N. Y.: IGI Global, 2011. 578 p.
- 14. **Труды** по теории синтеза и диагноза конечных автоматов и релейных устройств /Под ред. В. В. Сапожникова, Вл. В. Сапожникова. СПб.: Элмор, 2009. 594 с.

- 15. **Максфилд К.** Проектирование на ПЛИС. Архитектура, средства и методы. М.: Додэка-XXI, ДМК-Пресс, 2015. 408 с.
- 16. Мухопад Ю. Ф. Теория дискретных устройств. Иркутск: ИрГУПС, 2010. 172 с.
- 17. **Пат. 82888 U1 РФ.** Микропрограммный автомат /А. Ю. Мухопад, Ю. Ф. Мухопад. Заявл. 15.12.2008. Опубл. 10.05.2009, БИ № 13.
- 18. **Мухопад Ю. Ф., Мухопад А. Ю., Пунсык-Намжилов Д. Ц.** Управляющие автоматы мехатроники с новым определением состояний // Тр. II Междунар. науч.-практ.конф. Новокузнецк: НИЦ МС, 2018. С. 184–190.
- 19. **Пат. 183109 U1 РФ.** Управляющий автомат /Ю. Ф. Мухопад, А. Ю. Мухопад, Д. Ц. Пунсык-Намжилов. Заявл. 23.04.2018. Опубл. 11.09.2018, БИ № 26.
- 20. **А. с. 1547034 СССР.** Устройство для контроля перепрограммируемых блоков постоянной памяти /Ю. Ф. Мухопад, Г. С. Скосырский. Опубл. 28.02.1990, БИ № 8.
- 21. **Мухопад Ю. Ф., Мухопад А. Ю.** Алгоритмические системы управления. Иркутск: ИрГУПС, 2018. 96 с.
- 22. **A. с. 991587 СССР.** Формирователь временных интервалов /Ю. Ф. Мухопад, Г. С. Скосырский, Б. Д. Аюшиев и др. Опубл. 23.01.1983, БИ № 3.
- 23. **Шалыто А. А.** Логическое управление. Методы автоматной и программной реализации алгоритмов. СПб: Наука, 2000. 780 с.
- 24. **Филатов Д. А., Мухопад Ю. Ф.** Системы управления турбомеханизмами // Сб. Науч. вестн. Новосибирск: НЭТИ, 2013. Вып. 2. С. 17–22.

Поступила в редакцию 27.11.2020 После доработки 27.01.2021 Принята к публикации 18.06.2021