УДК 621.383.049.77

АНАЛИЗ ЭФФЕКТИВНОСТИ РАЗВЕТВИТЕЛЯ МОЩНОСТИ НА ОСНОВЕ ФОТОННОГО КРИСТАЛЛА В ЗАВИСИМОСТИ ОТ РАДИУСА ИСКУССТВЕННОГО ДЕФЕКТА ДЛЯ ДОСТИЖЕНИЯ ОПТИМАЛЬНОГО РЕЗОНАНСА

P. Jindal, H. J. Kaur

Chitkara Institute of Engineering and Technology, 140401, India, Chandigarh, Patiala National Highway, NH-64 E-mail: poonam.jindal@chitkara.edu.in harsimran.kaur@chitkara.edu.in

Нанофотоника является новой областью в технологии оптических материалов, задача которой — обеспечить прогресс в развитии оптических интегральных схем. Разветвитель мощности на фотонном кристалле представляет собой полезный компонент для создания фотонных интегральных схем. Такие разветвители являются важными элементами для соединения блоков в чипе. Предлагается конструкция Y-разветвителя мощности на двумерном фотонном кристалле (21×15 мкм), использующая явление резонанса в отражении электромагнитной волны от вытравленных круглых воздушных отверстий, образующих гексагональную решётку с периодом *a*. Для анализа такой структуры были использованы методы разложения электромагнитного поля по плоским волнам и конечных разностей во временной области. Результаты моделирования показывают, что оптимальный резонанс, обеспечивающий достижение максимальной передаваемой мощности с равным разделением в плечах, наблюдается при радиусе дефектного отверстия, равном 0,3*a* мкм.

Ключевые слова: фотонный кристалл, ширина запрещённой зоны для фотонов, разветвитель мощности, дефектное отверстие, метод разложения электромагнитного поля по плоским волнам.

DOI: 10.15372/AUT20180606

Введение. В последнее время возник существенный интерес к нанофотонным устройствам на фотонных кристаллах (ΦK), позволяющим обеспечить высокие скорости передачи данных. На основе фотонных кристаллов можно сконструировать сверхкомпактные оптические устройства, поскольку они обеспечивают волноводное пропускание света в малых областях [1]. Такие кристаллы способны выявить распространение фотонов подобно тому, как полупроводники определяют движение электронов. Фотонные кристаллы — искусственные структуры с периодическим изменением показателя преломления в трёх измерениях. В соответствии с этим различают одномерные, двумерные и трёхмерные ФК, обладающие способностью отражать свет в диапазоне частот, называемом фотонной запрещённой зоной (ФЗЗ) [2]. Эта способность придаёт фотонным материалам уникальные свойства, которые могут быть использованы для изготовления различных оптических устройств, таких как оптические переключатели, соединители, мультиплексоры, фильтры, разветвители мощности и т. п. [3]. Фотонные кристаллы являются устройствами малых размеров с малыми потерями, стали важным компонентом фотонных интегральных схем (ФИС) и вызывают в последнее время значительный интерес исследователей [4]. Разработка разветвителя мощности, представляющего собой ключевой компонент ФИС для осуществления ввода мощности в различные секции схемы, обусловлена тем, что он обладает низкими потерями при передаче потоков излучения, а также эффективной и компактной конструкцией. Основные типы разветвителей мощности показаны на рис. 1: Y-разветвитель (a), T-образный разветвитель (b), разветвитель с направленным ответвлением (c).

Puc. 1. Схемы разветвителей мощности

Разветвители мощности — класс устройств, осуществляющих разделение мощности излучения в поляризованных пучках света. В целях оптимизации работы разветвителей на ФК предложено и изготовлено множество разветвительных структур [5, 6]. Стержни из арсенида галлия (GaAs, показатель преломления 3, 4), образующие треугольную решётку, были выбраны с радиусом 0,18а, где а — постоянная решётки. Запрещённая зона для излучения с ТМ-поляризацией протягивается, начиная с $a/\lambda = 0.2956$ –0.4851, где λ — длина волны излучения в вакууме. Сконструированный разветвитель имеет длину 9,92 мкм [7]. В работе [8] дано сравнение У-разветвителей с квадратной и гексагональной решётками. Для минимизации обратных отражений и потерь на отражение на основании рассмотрения эффективности индивидуальной решётки предложена некоторая гибридная структура. Использованная гетероструктура обеспечила эффективность передачи мощности величиной 47 % в каждое плечо разветвителя. Предложена другая конструкция разветвителя оптической мощности с воздушными отверстиями на основе ФЗЗ-эффекта (эффекта существования запрещённой зоны для фотонов) в ФК-волноводе. При наличии одного дефектного отверстия в ФК-волноводе получена эффективность пропускания 49,5 % в полосе 70 нм. Затем был сконструирован двумерный фотонный кристалл на основе карбида кремния (SiC) для ближнего ИК-диапазона. Показано, что при использовании SiC вместо традиционных полупроводниковых материалов, таких как GaAs или Si, может быть достигнута ширина запрещённой зоны для фотонов 200 нм и реализованы волновод с широкой полосой пропускания (40 нм) и нанорезонатор с добротностью до 4500 [9].

Оптические разветвители мощности 1 × 4, построенные на ФК-волноводе с двумя плечами в треугольной решётке с воздушными отверстиями, сконструированы в работе [10]. Отверстия в области соединения модифицированы таким образом, чтобы можно было разделять входную мощность на четыре части с полосой пропускания до 80 нм. На длине волны 1550 нм пропускание в каждом плече составило 24,85 %. Изучено множество структур разветвителей мощности на ФК. Такие структуры включают диэлектрические штыри в воздухе и/или массив отверстий, расположенных в узлах квадратной или треугольной решётки на диэлектрической пластине [11]. Однако структура из диэлектрических стержней в воздухе обладает плохим вертикальным ограничением, а её реализация для большинства оптических устройств является сложной. Основная часть конструкций разветвителей мощности на ФК была разработана с акцентом на рассмотрение таких параметров, как длина изгибов и угол разветвителя, в целях улучшения характеристик пропускания. До сих пор вопросам, касающимся соединения плеч, не уделялось достаточного внимания. Помимо этого, изготовление микроустройств на ФК требует применения очень точных и тонких технологий. Проблема изготовления сложных структур является вызовом для исследователей. Поэтому можно полагать, что важной темой является ис-

Рис. 2. У-разветвитель мощности на фотонном кристалле

следование конструкций разветвителей мощности на ФК, которые способны обеспечить равное разделение мощности в плечах разветвителя с высокой эффективностью.

Описание конструкции Y-разветвителя мощности. Предложенная конструкция состоит из Y-разветвителя, воздушные отверстия которого с показателем преломления, равным единице, вытравлены в кремниевой подложке с показателем преломления 3,1. Отверстия с радиусом 0,3a образуют гексагональную решётку. Соединение плеч в Y-разветвителе образовано схождением трёх волноводов на ФК под углом 120° друг к другу для двух выходных ветвей с последующим их изгибом на 60° (рис. 2).

Двумерная кристаллическая структура проста в изготовлении и допускает лёгкую интеграцию в чип. Кроме того, воздушное отверстие легче реализовать, чем стержнеобразный объект [12]. Для изучения структуры использовались метод разложения электромагнитного поля по плоским волнам и метод конечных разностей во временной области. Зонная диаграмма структуры рассчитывалась по методу разложения электромагнитного поля по плоским волнам. Запрещённой зоной в периодической структуре называется диапазон частот электромагнитных волн, которые не могут распространяться в рассматриваемом кристалле [13]. Зонная диаграмма исследованной гексагональной решётки показана на рис. 3, из которого видно, что ширина запрещённой зоны для ТЕ-фотонов в структуре лежит в полосе от 0,24 до 0,38 c/a, где c — скорость света в вакууме.

Результаты и их обсуждение. Материалом для изготовления пластинок размером 21×15 мкм служит кремний. Модулированная гауссианой непрерывная волна используется в качестве входного сигнала с длиной волны $\lambda = 1,9$ мкм. Расчёт прохождения TE-моды производился для сетки отверстий с ячейкой размером $0,05 \times 0,05$ мкм ($\Delta X \times \Delta Z$) и с числом ячеек 300 (вдоль направления X) и 420 (вдоль направления Z). Продолжительность расчёта до получения окончательного результата составляла 24000 шагов по времени. Выходная мощность Y-разветвителя наблюдается в двух точках поперёк портов 1 и 2, показанных на рис. 2 зелёными точками. Резонатор формируется на месте пересечения входного и выходных волноводов таким образом, чтобы между ними осуществлялась хорошая связь. Резонанс наступает тогда, когда входной сигнал достигает соединения.

Puc. 3. Зонная диаграмма для фотонов в двумерной гексагональной решётке фотонного кристалла

Рис. 4. Временной отклик электрического поля E_y для Y-разветвителя: a — выходной порт 1 (r = 0,3a), b — выходной порт 2 (r = 0,3a), c — выходной порт 1 (r = 0,34a), d — выходной порт 2 (r = 0,34a), e — выходной порт 1 (r = 0,15a), f — выходной порт 2 (r = 0,15a)

Рассчитана форма электромагнитной волны, распространяющейся в разветвителе. На рис. 4, a-f представлены картины электрического поля (E_y) в направлении каждого из портов разветвителя на длине волны 1,9 мкм при различных комбинациях радиусов отверстий. Рассчитанная нормированная выходная мощность устройства для различных комбинаций радиусов показана на рис. 5, a-f.

В таблице приведены спецификации выходных сигналов двумерного разветвителя мощности на ФК, где r — радиус дефектного отверстия; P_i — нормированная мощность на входе разветвителя; P_1, P_2 — нормированные мощности на выходах разветвителя (порты 1 и 2); E_{y1}, E_{y2} — *у*-компоненты электрического поля в портах 1 и 2; H_{z1}, H_{z2} — *z*-компоненты магнитного поля в портах 1 и 2; η — общая эффективность разветвителя. Радиус дефектного отверстия в соединении увеличен с 0,3 до 0,5*a* и уменьшен с 0,3 до 0,15*a* в целях демонстрации реализации резонанса для получения максимальной связи. Нормированная входная мощность поддерживалась равной 1,4, затем наблюдалось нормированное распределение мощности в выходных портах 1 и 2 устройства. Также для обоих выходных портов оценивались компоненты полей E_y и H_z .

Puc. 5. Пропускная характеристика Y-разветвителя (значения радиусов выходных портов 1 и 2 см. на рис. 4)

Картина распространения *у*-компоненты электрического поля в многоплечевом разветвителе изучалась на длине волны 1,9 мкм. Обнаружено, что разветвитель имеет равные мощности в обоих выходных портах, также произведён расчёт полной эффективности разветвителя. Наибольшая полная эффективность передачи мощности для радиуса дефектного отверстия, равного 0,3*a*, составила 60 %. Таким образом, максимальный резонанс отмечается при радиусе отверстия, равном 0,3*a*, при этом достигается максимальная нормированная выходная мощность. Кроме того, двумерная гексагональная Y-структура на ФК является удобной для изготовления, поскольку она обладает подходящей запрещённой зоной для широкого диапазона геометрий, а также имеет малое значение показателя преломления диэлектрика. Если радиус отверстия выбирается превышающим значение 0,3*a*

din pusitan padaj con depentitore erbepertan								
r	P_i	P_1	E_{y1}	H_{z1}	P_2	E_{y2}	H_{z2}	$\eta, \%$
$0,\!3$	1,4	$0,\!42$	0,015144	$1,7 \cdot 10^{-5}$	$0,\!42$	0,014906	$0,2 \cdot 10^{-5}$	60
$0,\!34$	1,4	$0,\!3$	0,016365	$2,2\cdot 10^{-5}$	$_{0,3}$	0,015149	$0{,}23\cdot10^{-4}$	42
$0,\!38$	1,4	$0,\!28$	0,011973	$0,\!3\cdot 10^{-5}$	$0,\!28$	0,0101212	$1,1\cdot 10^{-5}$	40
0,5	1,4	0,32	0,002609	$0,1 \cdot 10^{-5}$	0,32	0,005265	$0.8 \cdot 10^{-5}$	46
0,25	1,4	0,36	0,014901	$0,2\cdot 10^{-5}$	0,36	$0,\!15885$	$1,5\cdot 10^{-5}$	51
0,15	1,4	0,28	0,012947	$0,16\cdot 10^{-5}$	0,28	0,014692	$0,12\cdot 10^{-5}$	40

Спецификация выходных сигналов для Y-разветвителя на ФК для разных радиусов дефектного отверстия

или имеющим значение меньше чем 0,3*a*, то оптимальное условие для резонанса не реализуется. Это приводит к появлению потерь на поглощение и интенсивных обратных отражений в плечах разветвителя. Таким образом, можно заключить, что оптимальный радиус дефектного отверстия равен 0.3а, при этом сконструированный разветвитель представляет собой соединение трёх волноводов с резонаторной связью. Равное разделение мощности подтверждается таблицей, которая тем самым показывает, что сконструированный У-разветвитель на ФК является симметричным разветвителем, из чего следует, что увеличение радиуса отверстия повышает объём полости. Это вводит моду полости в резонанс с волноводной модой и таким образом увеличивает выходную мощность устройства [14]. Кроме того, У-разветвитель является базовой структурой, которая удовлетворяет условию резонанса с одним отверстием на пересечении трёх волноводов и устраняет проблемы, связанные с изготовлением более сложных структур [15]. Применение фотонных кристаллов покрывает широкий диапазон электромагнитного спектра (от 200 до 1500 нм). Инфракрасная область спектра, лежащая между видимым и СВЧ-излучением, занимает диапазон длин волн от 0,75 до 1000 мкм. Обсуждаемый в данной работе разветвитель мощности был сконструирован для ИК-приёмников, используемых для обнаружения задымлений.

Заключение. Предложена конструкция разветвителя мощности излучения на двумерном (21×15 мкм) фотонном кристалле с варьируемым радиусом дефектного отверстия. Для анализа структуры были использованы метод разложения электромагнитного поля по плоским волнам и метод конечных разностей во временной области. Численное моделирование проводилось с помощью программного пакета optiFDTD. Результаты моделирования показывают, что оптимальный размер радиуса дефектного отверстия в соединении плеч разветвителя, обеспечивающий достижение резонанса, составляет 0,3*a*. Такая конструкция разветвителя обусловливает равное и однородное распределение мощности на выходных портах устройства с эффективностью передачи мощности 60 %. Сконструированный Y-разветвитель мощности излучения представляет собой базовую структуру, удовлетворяющую условию резонанса на одном отверстии на пересечении трёх волноводов (при её использовании удаётся избежать проблем, встречающихся при изготовлении более сложных структур).

СПИСОК ЛИТЕРАТУРЫ

- Joannopoulos J. D., Villeneuve P. R., Fan S. Photonic crystals: Putting a new twist on light // Nature. 1997. 386, N 6621. P. 143–149.
- Noda S. Recent progresses and future prospects of two and three dimensional photonic crystals // Journ. Lightwave Technol. 2006. 24, N 12. P. 4554–4567.
- 3. Singal T. L. Optical Fiber Communication Principles and Applications. Delhi: Cambridge University Press, 2016. 450 p.
- Zhen Y. R., Li L.-M. A novel application of two-dimensional photonic crystals: Polarization beam splitter // Journ. Phys. D: Appl. Phys. 2005. 38, N 18. P. 3391–3394.
- Liu T., Zakharian A., Fallahi M. Multimode interference-based photonic crystal waveguide power splitter // Journ. Lightwave Technol. 2004. 22, N 12. P. 2842–2846.
- Yu T. B., Wang M. H., Jiang X. Q. et al. Ulltracompact and wideband power splitter based on tripple photonic crystal waveguides directional coupler // Journ. Opt. A: Pure and Appl. Opt. 2007. 9, N 1. P. 37–42.
- Ghaffari A., Monifi F., Djavid M., Abrishamian M. Analysis of photonic crystal power splitters with different configurations // Journ. Appl. Sci. 2008. 8, N 8. P. 1416–1425.
- Yu T., He L., Deng X. et al. Power splitter based on photonic crystal waveguides with an air holes array // Opt. Eng. 2011. 50, N 11. P. 114601–114604.

- Song B. S., Yamada S., Asano T., Noda S. Demonstration of two-dimensional photonic crystals based on silicon carbide // Journ. Opt. Express, Opt. Soc. Am. 2011. 19, N 12. P. 11084– 11089.
- Wang H., He L. Proposal for high efficiently 1 × 4 power splitter based on photonic crystal waveguides // Modern Phys. Lett. B. 2015. 29, N 15. P. 1550073–1550076.
- Yang D., Tian H., Ji Y. High-bandwidth and low-loss photonic crystal power-splitter with parallel output based on the integration of Y-junction and waveguide bends // Opt. Commun. 2012. 285, N 18. P. 3752–3757.
- Danaie M., Nasirifar R., Dideban A. Design of adjustable T-shaped and Y-shaped photonic crystal power splitters for TM and TE polarizations // Turkish Journ. Electr. Eng. & Computer Sci. 2017. 25, N 5. P. 4398–4408.
- Chantakit T., Srinuanjan K., Yupapin P. P. Two dimension photonic crystal Y-branch beam splitter with variation of splitting ratio based on hybrid defect controlled // Appl. Phys. A. 2014. 117, N 2. P. 547–552.
- 14. Danaie M., Nasiri Far R., Dideban A. Design of a high-bandwidth Y-shaped photonic crystal power splitter for TE modes // Intern. Journ. Opt. and Photon. 2018. 12, N 1. P. 33–42.
- Sridarshini T., Indira Gandhi S., Rakshitha M. Design and analysis of 1 × N symmetrical optical splitters for photonic integrated circuits // Optik. 2018. 169. P. 321–331.

Поступила в редакцию 14 августа 2018 г.