УДК 544.022.4

МОЛЕКУЛЯРНО-ЛУЧЕВАЯ ЭПИТАКСИЯ БУФЕРНЫХ СЛОЁВ ВаF₂/СаF₂ НА ПОДЛОЖКЕ Si(100) ЛЛЯ МОНОЛИТНЫХ ФОТОПРИЁМНЫХ УСТРОЙСТВ

Н. И. Филимонова, В. А. Илюшин, А. А. Величко

Новосибирский государственный технический университет, 630073, г. Новосибирск, просп. К. Маркса, 20 E-mail: ninafilimonova@nqs.ru

Исследование морфологии поверхности эпитаксиальных плёнок ${\rm BaF_2}$, выращенных методом молекулярно-лучевой эпитаксии в различных режимах роста на поверхности ${\rm CaF_2/Si(100)}$, проведено методом атомно-силовой микроскопии. Слои ${\rm CaF_2}$ получены на подложке ${\rm Si(100)}$ в низкотемпературном режиме роста ($T_s=500~{\rm ^{\circ}C}$). Определены технологические режимы роста сплошных с гладкой поверхностью плёнок ${\rm BaF_2}$ на ${\rm CaF_2/Si(100)}$, пригодных в качестве буферных слоёв для последующего роста слоёв ${\rm PbSnTe}$ или других полупроводников типа ${\rm A_4B_6}$ и твёрдых растворов на их основе.

Ключевые слова: молекулярно-лучевая эпитаксия, фторид кальция, фторид бария, кремний, буферный слой, ACM, морфология поверхности.

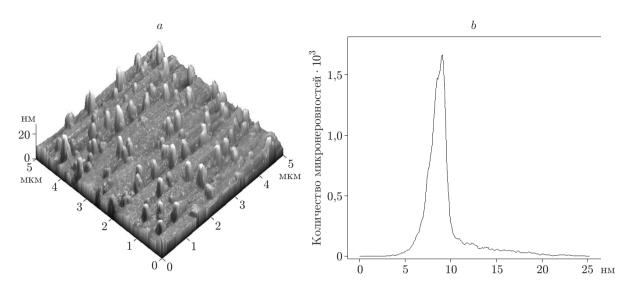
DOI: 10.15372/AUT20170315

Введение. Создание монолитных многоэлементных фотоприёмных устройств (ФПУ) ИК-диалазона является одним из перспективных направлений развития современной оптоэлектроники, так как это даст возможность снизить стоимость ФПУ в целом и улучшить характеристики приборов [1-3]. Вследствие того что схемы обработки сигналов формируются в кремнии, для обеспечения высоких электрофизических, структурных и морфологических параметров узкозонных полупроводниковых слоёв, в которых формируются фоточувствительные элементы, необходимо использовать буферные слои, позволяющие согласовать узкозонный полупроводник с кремниевой подложкой по параметрам кристаллической решётки и по коэффициенту температурного расширения. Перспективным материалом для создания ФПУ являются узкозонные полупроводники A_4B_6 и твёрдые растворы на их основе, поскольку весь ИК-диапазон можно перекрыть такими соединениями, как PbS, $Pb_{1-x}Sn_xSe$, PbTe, $PbS_{1-x}S_x$, $Pb_{1-x}Eu_xSe$, $Pb_{1-x}Sn_xTe$ [4–6]. Наиболее подходящий материал для эпитаксии соединений A_4B_6 (халькогенидов свинца) — фториды щёлочноземельных металлов, особенно ВаF₂, несмотря на различие в кристаллической структуре [5]. С одной стороны, рассогласование постоянных решёток BaF₂ и PbSe или PbTe не очень большое (-1, 2 и +4, 2 % соответственно); с другой — в отличие от стандартных полупроводниковых подложек типа Si и GaAs коэффициент теплового расширения BaF₂ при температурах выше 300 К идеально согласуется с коэффициентом теплового расширения халькогенидов свинца. Эпитаксиальные слои халькогенидов свинца на подложках ВаГ2 обладают высоким структурным совершенством и имеют электрические характеристики, сравнимые с монокристаллическими объёмными образцами, подвергнутыми отжигу [5]. Также с высоким структурным качеством получены слои соединений A_4B_6 и твёрдых растворов на их основе (например, PbSnTe) на положках Si(111) при использовании слоёв ВаF₂/СаF₂ как буферных [7–9]. Но ввиду того что накопление, усиление и мультиплексирование сигналов фоточувствительных элементов осуществляются в интегральных схемах, которые формируются в кремниевых подложках ориентации (100), актуальной является задача получения фоточувствительных слоёв узкозонных материалов с высокими электрофизическими и структурными параметрами на подложке Si(100). В работе [10] показано, что структурные и электрофизические параметры фоточувствительных слоёв PbSnTe сильно зависят от морфологии поверхности и структурного совершенства буферных слоёв фторидов щёлочно-земельных металлов на кремниевых подложках. В [11] получена практически атомарно-гладкая поверхность BaF_2/CaF_2 на Si(100), её недостатком явилось наличие пустот в эпитаксиальных слоях BaF_2/CaF_2 , что, несомненно, снижает электрическую прочность диэлектрических слоёв и повышает токи утечки. В [12] сделана попытка получить буферные слои BaF_2/CaF_2 с гладкой поверхностью и отсутствием пустот в диэлектрических слоях. На первом этапе исследовалась морфология поверхности эпитаксиальных плёнок BaF₂, выращенных методом молекулярно-лучевой эпитаксии (МЛЭ) в различных режимах роста на поверхности слоя CaF2, полученного в высокотемпературном режиме роста ($T_s=750~{\rm ^{\circ}C}$) на подложках ${\rm Si}(100)$. Также показано, что эпитаксия BaF_2 при $T_s=750$ °C обеспечивает получение бездефектных плёнок с морфологией поверхности, приемлемой для последующего роста полупроводников типа A_4B_6 и твёрдых растворов на их основе, в то время как эпитаксия BaF₂ при температуре 600 °C на начальной стадии роста приводит к образованию дефектов в виде проколов в эпитаксиальной плёнке, как в [11].

Цель данной работы — дальнейшая оптимизация режимов роста буферных эпитаксиальных слоёв BaF_2 на CaF_2 , осаждённых на подложку Si(100) при низкой температуре ($T_s = 500$ °C), обеспечивающих получение сплошных слоёв $BaF_2/CaF_2/Si(100)$ с более гладкой морфологией поверхности для последующего роста соединений слоёв A_4B_6 и твёрдых растворов на их основе (например, PbSnTe).

Методика эксперимента. Плёнки BaF₂/CaF₂ были выращены методом МЛЭ на подложках Si(100) марки КЭФ-4.5. Стандартная предэпитаксиальная обработка подложек кремния включала стадии очистки в органических растворителях, стравливание окисла в HF и формирование пассивирующего окисла в H₂O:H₂O₂:HNO₃. После загрузки подложки в модуль роста диэлектрических слоёв пассивирующий окисел удалялся отжигом при температуре ~ 800 °C до появления отчётливой дифракционной картины Si(100)- (2×1) . Затем последовательно выращивались слои CaF_2 и BaF_2 . Температура молекулярного источника подбиралась такой, чтобы скорость роста CaF₂ была в пределах 10–15 нм/ч. В данной работе в отличие от [12] представлены результаты исследования морфологии поверхности слоёв BaF₂, полученных на слоях CaF₂, которые выращены на Si(100) в низкотемпературном режиме роста ($T_s = 500$ °C). Температура молекулярного источника фторида бария варьировалась так, чтобы скорость роста BaF_2 находилась в пределах 40–50 нм/ч для всех образцов кроме В10 и В11. Эти образцы были получены при повышенной скорости роста от 150 до 170 нм/ч. Режимы роста слоёв BaF_2 на низкотемпературном $CaF_2/Si(100)$ изменялись в целях создания оптимальных режимов, обеспечивающих получение сплошных слоёв с гладкой морфологией поверхности. Технологические режимы роста слоёв ВаF₂ (образцов) представлены в таблице. Во всех случаях отжиг проводился при прерванном росте при температуре 850 °C в течение 10 минут.

Микроморфология поверхности образцов исследовалась с помощью атомно-силового микроскопа (ACM) "Solver P47H" фирмы NT-MDT (Москва). Для исключения артефактов, обусловленных неоднородностями молекулярного потока и температуры по площади подложки, измерения ACM всегда проводились в точках, имеющих одинаковое конфигурационное расположение относительно устройств ростовой камеры. Сканирование осуществлялось в полуконтактном режиме с использованием кремниевых кантилеверов типа NSG-10, имеющих резонансную частоту 190–325 кГц, характерное латеральное разрешение ACM 10–20 нм, и по направлению к нормали поверхности 1–2 Å. При измерениях сканирование проводилось параллельно и перпендикулярно направлению базового среза подложки Si(100), т. е. вдоль направлений [110] и [1 $\bar{1}$ 0].


Номер образца	Температура подложки ВаF ₂ , °C	Эффективная толщина плёнки ВаF ₂ , нм	$Z_{ m cp},$ нм
В8	$T_{s_1} = 500$	~50	~8
	$T_{\text{отж}} = 850$	_	
	$T_{s_2} = 750$	~50	
	Общая толщина BaF_2	100	
B10	$T_{s_1} = 750$	~25	~3
	$T_{s_2} = 500$	~50	
	$T_{\text{отж}} = 850$	_	
	$T_{s_3} = 750$	~150	
	Общая толщина BaF_2	225	
B11	$T_{s_1} = 500$	~75	~140
	$T_{\text{отж}} = 850$		
	$T_{s_2} = 650$	~150	
	Общая толщина BaF ₂	225	

Результаты эксперимента и их обсуждение. В таблице представлены параметры ростовых процессов слоёв BaF_2 , выращенных на низкотемпературных слоях CaF_2 . Для всех образцов этой группы рост низкотемпературных слоёв CaF_2 проводился при температуре подложки $T_s = 500~^{\circ}\mathrm{C}$ со скоростью $15~\mathrm{mm/y}$. Толщина слоя CaF_2 составила порядка $15~\mathrm{mm}$. Так как первый буферный слой CaF_2 для всех образцов был одинаковым, то все отличия морфологии поверхности определялись режимами роста фторида бария. Процесс роста BaF_2 состоял из трёх или четырёх этапов. На низкотемпературном слое CaF_2 сначала выращивался первый слой BaF_2 при температуре T_{s_1} , затем рост останавливался и проводился отжиг, далее выращивался второй слой BaF_2 при температуре T_{s_2} .

В серии образцов В8 рост фторида бария трёхстадийный. Первый слой BaF_2 выращен последовательно за фторидом кальция без перерыва роста в течение 60 мин в низкотемпературном режиме (при температуре подложки ~ 500 °C). Затем был произведён отжиг в течение 10 мин при температуре 850 °C при прерванном росте. Второй слой BaF_2 был выращен в течение 60 мин в высокотемпературном режиме (при температуре подложки 750 °C).

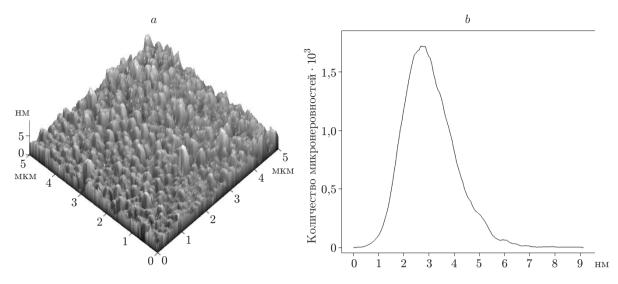
На рис. 1 представлены трёхмерное АСМ-изображение поверхности и статистическое распределение высот поверхностных образований структур В8. Область сканирования составляла 5×5 мкм. Наблюдаемая морфология поверхности соответствует трёхмерному механизму роста. На поверхности достаточно однородной плёнки BaF_2 образца B8 формируются отдельно стоящие островки, имеющие форму усечённой пирамиды с прямоугольным основанием и плоской прямоугольной вершиной (рис. 1, a). Стороны прямоугольников ориентированы вдоль направлений [110] и [1 $\bar{1}$ 0] и имеют размеры порядка 149–156 нм (по $X \parallel [1\bar{1}0]$) и порядка 114–154 нм (по $Y \parallel [110]$). Максимальная высота пирамид не превышает 25 нм. Средняя высота микронеровностей ($Z_{\rm cp}$) по области сканирования составляет \sim (8–9) нм. При этом средняя шероховатость (ΔZ) не превышает 1,63 нм.

Важно отметить, что средняя высота микронеровностей поверхности плёнки BaF_2 не превышает 10 нм при общей толщине плёнки 100 нм. Из этого следует, что в плёнке отсутствуют пустоты, которые приводят к значительным токам утечки через буферные диэлектрические слои между фоточувствительным слоем и подложкой. Плёнка фторида бария является сплошной, а средняя высота микронеровностей поверхности равная ~ 8 нм

Puc.~1.~ Образец слоя $BaF_2/CaF_2/Si(100)~B8:~a$ — трёхмерное ACM-изображение морфологии поверхности; b — статистическое распределение высот микронеровностей на поверхности

по данным, приведённым в работе [13], не должна препятствовать последующему росту фоточувствительных слоёв. В [13] получены пригодные для изготовления фотоприёмников структуры PbSnTe:In на буферном слое BaF₂/CaF₂ с микронеровностями поверхности ВаF2 порядка 10 нм. Учитывая результаты [14], можно сделать вывод, что эпитаксия ${
m BaF}_2$ в высокотемпературном режиме (при $T_s=750$ °C) на завершающей стадии роста обеспечивает формирование сплошных плёнок с $Z_{\rm cp} \sim 7\text{--}8$ нм независимо от режима роста CaF₂. Данные технологические режимы роста могут быть использованы для выращивания буферных слоёв, пригодных для последующего роста слоёв PbSnTe или других полупроводниковых слоёв. Исследования, проведённые в [15, 16], показали, что диэлектрические слои BaF₂/CaF₂ обладают достаточной электрической прочностью, механической и химической стойкостью и полностью вписываются, например, в стандартный маршрут изготовления КМОП/КНС интегральных схем, хотя следует отметить, что изготовление приборных структур на буферных слоях фторидов требует разработки технологических процессов с ограниченным применением воды. Но данные технологические проблемы давно были успешно решены как в отечественных [13, 15, 17–20], так и зарубежных [7, 21–23] работах.

Образцы B10 и B11 были выращены при повышенной скорости роста. Фторид бария в образце B10 получен по четырёхстадийной методике.


На первой стадии последовательно за фторидом кальция без перерыва роста в течение 10 мин в высокотемпературном режиме (при температуре подложки 750 °C) был сформирован первый слой BaF_2 толщиной 25 нм со скоростью 150 нм/ч.

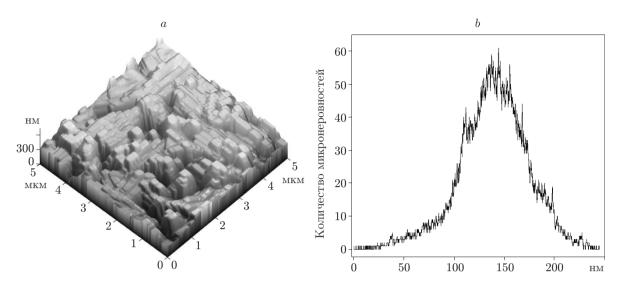
На второй стадии скорость роста была снижена до 50 нм/ч. Второй слой ${\rm BaF_2}$ осаждался в течение 60 мин в низкотемпературном режиме (при температуре подложки 500 °C).

На третьей производился отжиг в течение 10 мин при температуре 850 °C при прерванном росте.

На четвёртой стадии скорость роста была такой же, как на первой, — приблизительно 150 нм/ч. Третий слой BaF_2 осаждался в течение 60 мин в высокотемпературном режиме (при температуре подложки 750 °C).

На рис. 2 представлены трёхмерное ACM-изображение поверхности и статистическое распределение высот поверхностных образований структур B10. Поверхность образ-

 $Puc.\ 2.\ Образец слоя <math>BaF_2/CaF_2/Si(100)\ B10$


цов В10 равномерно и однородно без проколов покрыта островками прямоугольной, почти квадратной, формы с латеральными размерами порядка 153–213 нм (вдоль $X \parallel [1\bar{1}0])$ и 184–243 нм (вдоль $Y \parallel [110])$. Средняя высота микронеровностей не превышала 3 нм (от 2,67 до 3,04 нм), что более чем в 2 раза меньше аналогичной величины в плёнках фторида бария как предыдущего образца (В8), так и в плёнках, полученных на высокотемпературных слоях фторида кальция [12]. При этом средняя шероховатость поверхности не превышает 0,8 нм. Средняя высота микронеровностей \sim 3 нм при общей толщине плёнки Ва F_2 225 нм свидетельствует о формировании сплошной плёнки без проколов и пустот, что гарантирует низкие токи утечки. Данные результаты интересны тем, что морфология поверхности плёнок фторида бария гораздо более гладкая, чем морфология поверхности нижележащих плёнок фторида кальция, полученных в низкотемпературном режиме ($T_s = 500$ °C) и имеющих более плохую морфологию [14]. Предложенный четырёхстадийный режим роста обеспечивает получение сплошных буферных слоёв Ва F_2 /Са F_2 с гладкой морфологией поверхности, пригодной для дальнейшего роста фоточувствительных полупроводниковых слоёв соединений A_4B_6 и твёрдых растворов на их основе.

В серии образцов В11 рост ВаF₂ был выполнен по двухстадийной методике.

На первой стадии последовательно за фторидом кальция без перерыва роста в низкотемпературном режиме (при температуре подложки 500 °C) получен первый слой BaF_2 толщиной 80 нм при скорости роста 160 нм/ч. Затем производился отжиг в течение 10 мин при 850 °C с прерыванием роста.

Второй слой BaF_2 осаждался в течение 60 мин при температуре подложки 650 °C с той же скоростью роста.

На рис. З представлены трёхмерное АСМ-изображение поверхности и статистическое распределение высот поверхностных образований структур В11. Область сканирования составила 5×5 мкм. Из рисунка хорошо видно, что на поверхности сформированы большие островки, имеющие форму усечённой пирамиды с прямоугольным основанием, и более малые островки с почти квадратным основанием. Латеральные размеры малых островков были порядка 200—300 нм. Они формируются на более крупных островках прямоугольной формы с латеральными размерами $700 \times (200-300)$ нм. Морфология поверхности грубая и неупорядоченная. Средняя высота микронеровностей составила 139,1 нм, при этом $\Delta Z = 26,86$ нм. Следовательно, режимы роста образца В11 не являются оптимальными. Известно, что повышенная скорость роста [24, 25] может привести к грубой морфологии

Puc.~3.~Образец слоя $BaF_2/CaF_2/Si(100)~B11$

поверхности. Новые островки на поверхности в этом случае возникают до того момента, когда предыдущий слой полностью сформируется и покроет подложку. Островки нового слоя, как известно, растут латерально за счёт присоединения диффундирующих по поверхности молекул и вертикально (нормально) путём зарождения новых слоёв на вершинах существующих островков. Относительные скорости этих процессов, зависящие как от величины молекулярного потока из источника, так и от различных диффузионных барьеров, соответствующих подложке, определяют в итоге морфологию поверхности растущей плёнки. Важно отметить, что скорости роста образцов В10 и В11 были одинаковы, в то время как средние высоты микронеровностей поверхности $Z_{\rm cp}$ образцов различались приблизительно в 50 раз. Из таблицы видно, что большая часть плёнки образцов В10 получена в высокотемпературном режиме (при температуре подложки 750 °C), тогда как бо́льшая часть плёнки образцов В11 выращена в промежуточном режиме при температуре подложки порядка 650 °C. Вероятно, в диапазоне температур от 600 до 700 °C резко меняются диффузионные барьеры, соответствующие хемосорбированному (или адсорбированному) интерфейсному и покровному слоям. Это даёт возможность заключить, что такие температуры не являются оптимальными для роста фторида бария.

Заключение. Приведённые экспериментальные данные позволяют сделать следующие выводы: эпитаксия BaF_2 при $T_s=750$ °C на завершающей стадии роста (образцы B8) обеспечивает получение сплошных плёнок с $Z_{\rm cp}\sim7$ –8 нм. Трёхстадийный процесс роста BaF_2 при $T_s=750$ °C на начальной и завершающей стадиях роста с промежуточной стадией осаждения при $T_s=500$ °C с отжигом (B10) позволяет сформировать сплошные слои с $Z_{\rm cp}\sim3$ нм. Слои, образованные в этих режимах (образцы B8 и B10), могут быть использованы в качестве буферных для последующего роста слоёв PbSnTe или других полупроводников типа A_4B_6 и твёрдых растворов на их основе.

СПИСОК ЛИТЕРАТУРЫ

- 1. **Овсюк В. Н., Курышев Г. Л., Сидоров Ю. Г. и др.** Матричные фотоприемные устройства инфракрасного диапазона. Новосибирск: Наука, 2001. 376 с.
- 2. Пат. 2278446 РФ. Интегральное многоэлементное фотоприемное устройство инфракрасного диапазона /А. А. Величко, В. А. Илюшин, Н. И. Филимонова и др. Опубл. 20.06.2006, Бюл. № 17.

- 3. **Пат. 158292 РФ.** Фотоприемное устройство ИК-диапазона /А. А. Величко, В. А. Илюшин, Н. И. Филимонова и др. Опубл. 27.12.2015, Бюл. № 36.
- 4. McCann P. J., Li L., Furneaux J. E., Wright R. Optical properties of ternary and quaternary IV–VI semiconductor layers on (100) BaF₂ substrates // Appl. Phys. Lett. 1995. **66**, Is. 11. P. 1355–1357.
- Springholz G., Shi Z., Zogg H. Molecular beam epitaxy of narrowgap IV-VI semiconductors // Thin Films: Heteroepitaxial Systems /Eds. W. K. Liu, M. B. Santos. Series on Directions in Condensed Matter Physics. Vol. 15. Singapore: World Scientific, 1999. P. 621–688.
- 6. **Неизвестный И. Г., Климов А. Э., Кубарев В. В., Шумский В. Н.** Приёмники излучения на основе плёнок PbSnTe:In, чувствительных в терагерцовой области спектра // Автометрия. 2016. **52**, № 5. С. 55–70.
- 7. **Zogg H., Huppi M.** Growth of high quality epitaxial PbSe onto Si using a (Ca, Ba)F₂ buffer layer // Appl. Phys. Lett. 1985. **47**, Is. 2. P. 133–135.
- 8. Wittmer M., Smith D. A., Segmuller A. et al. Characterization of epitaxial (Ca, Ba)F₂ films on Si(111) substrates // Appl. Phys. Lett. 1986. 49, Is. 14. P. 898–900.
- 9. **Zogg H., Majer P., Melchior H.** Graded Ha-fluoride buffer layers for heteroepitaxy of lead chalcogenides and CdTe on Si // Journ. Cryst. Growth. 1987. **80**, Is. 2. P. 408–416.
- 10. **Величко А. А., Илюшин В. А., Филимонова Н. И. и др.** Влияние температурных режимов роста на морфологию поверхности многослойных структур PbSnTe/BaF₂/CaF₂/Si(100), полученных методом молекулярно-лучевой эпитаксии // Науч. вестн. НГТУ. 2006. № 4(25). С. 131–137.
- 11. **Fang X. M., McCann P. J., Liu W. K.** Growth studies of CaF₂ and BaF₂/CaF₂ on (100) silicon using RHEED and SEM // Thin Solid Films. 1996. **272**, Is. 1. P. 87–92.
- 12. Филимонова Н. И., Илюшин В. А., Величко А. А. Исследование особенностей гетероэпитаксии BaF₂ на слоях CaF₂/Si(100), полученных в высокотемпературном режиме роста // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2017. № 1. С. 79–84.
- 13. **Акимов А. Н., Беленчук А. В., Климов А. Э. и др.** Тонкопленочные структуры PbSnTe:In/BaF₂/CaF₂/Si для монолитных матричных фотоприёмных устройств дальнего ИК-диапазона // Письма в ЖТФ. 2009. **35**, № 11. С. 88–95.
- 14. **Илюшин В. А., Величко А. А., Филимонова Н. И.** Влияние температурных режимов роста на морфологию поверхности пленок $CaF_2/Si(100)$, полученных МЛЭ // Науч. вестн. НГТУ. 2007. № 3(28). С. 197–202.
- 15. **Величко А. А.** Разработка технологии оптоэлектронных ИС на гетероструктурах полупроводник—(Са, Sr, Ba)F₂—полупроводник: Дисс. . . . д-ра техн. наук. Новосибирск, 1999. 372 с.
- 16. Величко А. А., Илюшин В. А., Антонова И. В., Филимонова Н. И. Влияние режимов молекулярно-лучевой эпитаксии на морфологию поверхности и электрофизические параметры структур $CaF_2/BaF_2/Si(100)$ // Сб. науч. тр. НГТУ. 2005. № 4(42). С. 77–82.
- 17. **Алтухов А. А., Митягин А. Ю.** Перспективные структуры «кремний на диэлектрике» КМОП ИС на основе эпитаксиальных слоев Si/CaF₂/Si // Микроэлектроника. 2001. **30**, № 2. С. 113–118.
- 18. **Величко А. А., Кольцов Б. Б.** Электрофизические параметры КМОП-транзисторов на основе эпитаксиальной структуры Si/CaF₂/Si // Микроэлектроника. 1997. **26**, № 1. С. 54–58.
- 19. **Величко А. А., Кольцов Б. Б., Окомельченко И. А.** Новый КМОП-транзистор на основе гетероструктуры Si/CaF₂/Si // Электронная промышленность. 1992. № 5. С. 50–51.
- 20. Кольцов Б. Б. Разработка технологии КМОП ИС на структурах КНД: Автореф. дисс. . . . канд. техн. наук. Новосибирск, 2001. 26 с.

- 21. **Zogg H., Alchalabi K., Zimin D. et al.** Two-dimensional monolithic lead chalcogenide infrared sensor array on silicon read-out chip // Nuclear Instrum. Meth. Phys. Res. A. 2003. **512**, Is. 1–2. P. 440–444.
- 22. Masek J., Ishida A., Zogg H. et al. Monolithic photovoltaic PbS-on-Si infrared-sensor array // IEEE Electron Device Lett. 1990. 11, Is. 1. P. 12–14.
- 23. **Zogg H.**, Maissen C., Masek J. et al. Heteroepitaxial $Pb_{1-x}Sn_xSe$ on Si infrared sensor array with 12 μ m cutoff wavelength // Appl. Phys. Lett. 1989. **55**, Is. 10. P. 969–971.
- 24. **Чернов А. А., Гиваргизов Е. И., Багдасаров Х. С. и др.** Современная кристаллография. Т. 3. Образование кристаллов /Под. ред. Д. Е. Темкина. М.: Наука, 1980. 407 с.
- 25. **Olmstead M. A.** Heteroepitaxy of disparate materials: from chemisorphtion to epitaxy in CaF₂/Si(111) // Thin Films: Heteroepitaxial Systems /Eds. W. K. Liu, M. B. Santos. Series on Directions in Condensed Matter Physics. Vol. 15. Singapore: World Scientific, 1999. Ch. V. P. 211–266.

Поступила в редакцию 8 декабря 2016 г.