РОССИЙСКАЯ АКАДЕМИЯ НАУК

СИБИРСКОЕ ОТДЕЛЕНИЕ

АВТОМЕТРИЯ

№ 4

2000

УДК 519.816

С. Н. Монсеев

(Воронеж)

РАЗЛИЧЕНИЕ ГИПОТЕЗ О НОРМАЛЬНОМ ИЛИ КОШИ-РАСПРЕДЕЛЕНИИ ВЫБОРКИ

По методу максимального правдоподобия синтезирован алгоритм различения двух альтернативных гипотез о нормальном или Коши-распределении выборки при неизвестных параметрах распределений. Получены и полтверждены моделированием выражения для вероятностей ошибок алгоритма.

Нормальное распределение при определенных условиях является предельным для сумм независимых одинаково распределенных случайных величин (НОРСВ). В общем случае предельными для сумм НОРСВ являются устойчивые распределения. Среди них особо следует выделить законы с целым показателем устойчивости (нормальный и Коши), которые занимают важное место в аналитическом плане в теории устойчивых распределений. По наблюдениям автора работы [1] эти законы чаще других устойчивых распределений появляются в различных приложениях. Поэтому, когда возникает задача подбора распределения к наблюдаемым данным, получающимся в результате суммирования большого числа НОРСВ с неизвестными статистическими характеристиками, наиболее естественным первым шагом представляется проверка их на принадлежность нормальному или Коши-закону распределения. Подобного рода задачи идентификации наблюдений появляются при анализе телекоммуникационных трафиков [2], эконометрических данных [3], геофизических наблюдений (профильтрованные значения электронной концентрации слоя E_s ионосферы [4]) и в других приложениях, где встречаются распределения с тяжелыми хвостами.

Настоящая работа посвящена синтезу и анализу алгоритмов различения гипотез о нормальном или Коши-распределении выборки в условиях полной априорной неопределенности относительно параметров распределений.

Задачу различения сформулируем следующим образом. Пусть проверяется сложная гипотеза H_0 о распределении независимых выборочных значений $\mathbf{x} = \|x_1, ..., x_n\|$ по нормальному закону с плотностью вероятностей

$$W_0(x; m, \theta) = \frac{1}{\sqrt{2\pi\theta}} \exp\left\{-\frac{(x-m)^2}{2\theta}\right\}, \quad \theta > 0,$$
 (1)

против сложной альтернативы H_1 о распределении ${\bf x}$ по закону Коши с плотностью вероятностей

$$W_1(x; a, b) = \frac{b}{\pi[b^2 + (x - a)^2]}, \quad b > 0.$$
 (2)

Синтез. Правило принятия решения, построенное по методу максимального правдоподобия (МП) аналогично работе [5], имеет вид

$$\Lambda = \frac{\omega_0(\mathbf{x} \mid \hat{m}, \hat{0})}{\omega_1(\mathbf{x} \mid \hat{a}, \hat{b})} \underset{H_1}{\overset{H_n}{\gtrless}} 1, \tag{3}$$

где
$$\omega_0(\mathbf{x} \mid m, \theta) = \prod_{i=1}^n W_0(x_i; m, \theta)$$
 и $\omega_1(\mathbf{x} \mid a, b) = \prod_{i=1}^n W_1(x_i; a, b)$ — функции

правдоподобия распределений (1) и (2) соответственно; \hat{m} , $\hat{\theta}$ и \hat{a} , \hat{b} — оценки МП-параметров распределений (1) и (2), вычисленные при справедливости соответствующих гипотез H_0 и H_1 :

$$\hat{m} = \frac{1}{n} \sum_{i=1}^{n} x_{i}, \qquad \hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \hat{m})^{2}, \tag{4}$$

$$\frac{1}{n}\sum_{i=1}^{n}(x_{i}-\hat{a})W_{1}(x_{i};\,\hat{a},\,\hat{b})=0,\qquad \frac{1}{n}\sum_{i=1}^{n}W_{1}(x_{i};\,\hat{a},\,\hat{b})=\frac{1}{a\pi\hat{b}}.$$
 (5)

Представим алгоритм МП (3) в наиболее удобном для анализа виде:

$$L = \hat{S}_1 - \hat{S}_0 = \frac{1}{n} \sum_{i=1}^n \ln \frac{W_0(x_i; \hat{m}, \hat{\theta})}{W_1(x_i; \hat{a}, \hat{b})} \underset{H_1}{\overset{H_o}{\geqslant}} 0,$$
 (6)

где
$$\hat{S}_0 = -\frac{1}{n} \sum_{i=1}^n \ln W_0(x_i; \hat{m}, \hat{\theta}) = \frac{1}{2} \ln(2\pi e \hat{\theta}), \hat{S}_1 = -\frac{1}{n} \sum_{i=1}^n \ln W_1(x_i; \hat{a}, \hat{b}) -$$
выбо-

рочные оценки энтропий распределений (1), (2), проминимизированные по неизвестным параметрам, а статистика L представляет собой выборочную оценку расстояния Кульбака — Лейблера между распределениями W_0 и W_1 [6].

Практически использовать алгоритм МП (6) сложно из-за необходимости решать систему трансцендентных уравнений (5). Получим более простой квазиправдоподобный (КП) алгоритм, подставив в (6) вместо оценок МП $\{\hat{a}, \hat{b}\}$ оценки $\{a^*, b^*\}$, найденные по методу квантилей: $a^* = \text{med}(x)$, $b^* = E^* = (x_{(0,75)} - x_{(0,25)})/2$, где med(x), E^* и $x_{(p)}$ — соответственно выборочные медиана, срединное отклонение и квантиль порядка p. В результате имеем КП-алгоритм, формально выраженный через статистики a^* , b^* , $\hat{\theta}$:

$$Q = \ln \left[b^* \sqrt{\frac{\pi}{2e\hat{\theta}}} \right] + \frac{1}{n} \sum_{i=1}^n \ln \left[1 + \left(\frac{x_i - a^*}{b^*} \right)^2 \right] \underset{H_1}{\overset{H_0}{\gtrless}} 0. \tag{7}$$

Заменим оценку энтропии \hat{S}_1 в (6) на более простую $S_1^* = \ln(4\pi b^*)$, полученную на основании вида теоретической энтропии распределения Коши $S_1 = \ln(4\pi b)$. В результате имеем второй КП-алгоритм:

ма гит (о) и контроля ошноок при сто практическом применении неооходимо найти аналитические выражения для вероятностей ошибок двух родов: вероятности $P(H_1 \mid H_0)$ принятия гипотезы H_1 при условии, что справедлива гипотеза H_0 , и вероятности $P(H_0 \mid H_1)$ принятия гипотезы H_0 , когда верна гипотеза H_1 .

Пусть справедлива гипотеза H_0 о нормальном распределении выборки. В этом случае, разлагая статистику L (6) в ряд Тейлора по степеням \hat{m} , $\hat{\theta}$, \hat{a} , \hat{b} в точке их средних значений, можно показать [6], что L будет асимптотически нормальной при $n \to \infty$ и для ее анализа достаточно ограничиться нулевым членом разложения. Иными словами, имеет место следующая сходимость по распределению:

$$L \xrightarrow{d} L_0 \xrightarrow{d} N[M(L_0), D(L_0)], \tag{9}$$

где $N(m,\theta)$ – нормальная случайная величина из распределения (1);

$$L_0 = \frac{1}{n} \sum_{i=1}^{n} \ln \frac{W_0(x_i; m, 0)}{W_1(x_i; m, z\sqrt{\theta})},$$
(10)

z = 0,61200... – корень уравнения $z = -\frac{1}{2} \frac{d}{dz} \ln(1 - \Phi(z)),$

$$\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} \exp(-x^{2}/2) dx$$

— интеграл вероятностей. Среднее и дисперсия статистики L_0 не зависят от параметров распределения (1) (как, впрочем, и другие моменты) и вычисляются по формулам

$$M(L_0) = \int_{-\infty}^{\infty} W_0(x; 0, 1) \ln \frac{W_0(x; 0, 1)}{W_1(x; 0, z)} dx = 0,182758...,$$

$$D(L_0) = \frac{1}{n} \int_{-\infty}^{\infty} W_0(x; 0, 1) \left[\ln \frac{W_0(x; 0, 1)}{W_1(x; 0, z)} - M(L_0) \right]^2 dx = \frac{0,122276...}{n}.$$

Таким образом, на основании (9) можно написать асимптотически точное с ростом n выражение для вероятности ошибки МП-алгоритма $P(H_1 \mid H_0) = P(L < 0 \mid H_0)$:

$$P(H_1 | H_0) \to \Phi(-M(L_0)/\sqrt{D(L_0)}) = \Phi(-c_0\sqrt{n}),$$
 (11)

где $c_0 = 0,5226...$

Пусть справедлива гипотеза H_1 о распределении выборки по закону Коши. В этом случае асимптотическое поведение статистики L будет отличаться от нормального. Представим L в виде

$$L = \eta_0 - \frac{1}{2} \ln(\eta_1 - \eta_2) + \frac{1}{2} \ln \frac{\pi}{2en},$$

где
$$\eta_0 = \frac{1}{n} \sum_{i=1}^n \ln(1 + \mathring{x}_i^2); \ \eta_1 = \frac{1}{n^2} \sum_{i=1}^n \mathring{x}_i^2, \ \eta_2 = \frac{1}{n^3} \left(\sum_{i=1}^n \mathring{x}_i \right)^2; \ \mathring{x}_i = \frac{x_i - \hat{a}}{\hat{b}}.$$
 Средин-

ные (вероятные) отклонения $E(\cdot)$ статистик η_0 , η_1 , η_2 , характеризующие ширину их распределений, при $n \to \infty$ находятся в соотношениях $E(\eta_2) = o(E(\eta_1))$, $E(\eta_0) = o(\bar{E}(\ln \eta_1))$. Эти соотношения легко получить, учитывая, что при $n \to \infty$ $\eta_0 \xrightarrow{d} N[\ln 4, O(n^{-1})]$, $\frac{1}{n} \sum_{i=1}^n x_i^i \xrightarrow{d} x_1$. Следовательно,

асимптотическое поведение L будет определяться статистикой L_1 следующего вида:

$$L \xrightarrow{d} L_1 = \frac{1}{2} \ln \frac{8\pi}{em}, \tag{12}$$

где

$$\eta = \frac{1}{n^2} \sum_{i=1}^{n} \left(\frac{x_i - a}{b} \right)^2.$$
 (13)

Замена η_1 па η в (12) допустима, поскольку $\eta_1 \xrightarrow{d} \eta$, $n \to \infty$. Отметим, что распределение случайной величины η , а следовательно, и L_1 не зависит от параметров a и b распределения (2).

Найдем асимптотическое распределение статистики η . Для линейно нормированной суммы HOPCB предельное распределение, если оно существует, может быть только устойчивым [7]. Поэтому сразу можно написать четырехпараметрическую характеристическую функцию η при $n \to \infty$:

$$\Theta_{\eta}(u) \rightarrow \exp\{i\gamma u - \lambda |u|^{\alpha} \left[1 + i\beta u\omega(u,\alpha)/|u|\right]\}, \quad \alpha \in [0,2], |\beta| < 1, \ \lambda > 0, \ (14)$$

где

$$\omega(u,\alpha) = \begin{cases} \operatorname{tg}(\pi\alpha/2), & \operatorname{если} \alpha \neq 1; \\ \frac{2}{\pi} \ln|u|, & \operatorname{если} \alpha = 1. \end{cases}$$

Для определения показателя устойчивости α в (14) воспользуемся известным результатом Б. В. Гнеденко, изложенным, например, в [8], об областях притяжения предельного устойчивого закона, согласно которому хвост функции распределения F(x) случайной величины $\left(\frac{x_i-a}{b}\right)^2$ в сумме (13),

имеющей предельное распределение (14) с α < 2, ведет себя с ростом x как $1-F(x)=O(x^{-\alpha})L(x)$, где L(x) – медленно меняющаяся функция

$$(L(\varepsilon x)/L(x) \to 1, x \to \infty, \forall \varepsilon > 0).$$

Поскольку
$$1 - F(x) = 1 - \frac{2}{\pi} \operatorname{arctg} \sqrt{x} = O(x^{-1/2})$$
, то в (14) $\alpha = 1/2$.

Очевидно, что вероятностная мера величины η сосредоточена на всей положительной полуоси. Для устойчивого закона это выполняется, только если $\alpha < 1, \beta = 1$ [1]. Поэтому положим в (14) $\beta = 1$.

Среди устойчивых распределений значению параметров $\alpha=1/2$, $\beta=1$ соответствует так называемое семейство распределений Леви с плотностями [1]

$$W_{\eta}(x) \to \begin{cases} \frac{\lambda}{\sqrt{2\pi}} x^{-3/2} \exp\left(-\frac{\lambda^2}{2(x-\gamma)}\right), & x > \gamma; \\ 0, & x \le \gamma. \end{cases}$$
 (15)

В нашем случае $\gamma = 0$, так как только тогда распределение Леви сосредоточено на всей положительной полуоси.

При $\gamma = 0$ распределение (15) будет строго устойчивым. Для НОРСВ $\xi_1, ..., \xi_n$ из строго устойчивого распределения с показателем устойчивости α при любом n справедливо [8] $\frac{1}{n^{1/\alpha}} \sum_{i=1}^{n} \xi_i \stackrel{d}{=} \xi_1$. Поэтому параметр λ в (15)

асимптотически не зависит от объема выборки n. Проще всего рассчитать λ методом Монте-Карло, используя связь между Леви случайной величиной и нормальной:

$$\eta \xrightarrow{d} \frac{\lambda^2}{N^2(0,1)}.$$

Отсюда получаем формулу для расчета λ:

$$\lambda = \frac{\Phi^{-1}(3/4)}{\sqrt{\text{med}(1/\eta)}} \approx 0.8,$$

где $\Phi^{-1}(\cdot)$ – функция, обратная интегралу вероятностей $\Phi(x)$.

Функция распределения статистики L_1 (12), однозначно связанной с η , при $n \to \infty$ имеет вид:

$$F_{L_{\rm I}}(x) \to 2\Phi \left[\frac{\lambda \sqrt{n} \exp(x + 1/2)}{\sqrt{8\pi}} \right] - 1, \quad x \in (-\infty, \infty).$$
 (16)

Из (12) и (16) следует асимптотически точное с ростом n выражение для вероятности ошибки МП-алгоритма $P(H_0 \mid H_1) = P(L > 0 \mid H_1)$:

$$P(H_0 \mid H_1) \to 2\Phi\left(-\lambda \sqrt{\frac{ne}{8\pi}}\right) = 2\Phi\left(-c_1\sqrt{n}\right),\tag{17}$$

где $c_1 \approx 0,26$.

Большие уклонения. Из равномерной сходимости функции распределения $F_n(x)$ нормированной суммы HOPCB к нормальной функции распределения $\Phi(x)$, вытекающей из центральной предельной теоремы, следует [7], что соотношение

$$\frac{F_n(-x)}{\Phi(-x)} \to 1, \quad n \to \infty, \tag{18}$$

имеет место равномерно по x, когда x попадает в зону нормальной сходимости $[0, o(\sqrt{n})]$. В нашем случае, см. формулу (11), $x = c_0 \sqrt{n}$ и сходимость (18) может не иметь места. Чтобы удовлетворить (18), воспользуемся формулой [7]

$$\frac{F_n(-x)}{\Phi(-x)} = g(x,n) = \exp\left\{-\frac{x^3}{\sqrt{n}}R\left(-\frac{x}{\sqrt{n}}\right)\right\} \left[1 + O\left(\frac{x+1}{\sqrt{n}}\right)\right]. \tag{19}$$

Здесь $R(x) = s_0 + s_1 x + s_2 x^2 + ... -$ ряд Крамера. Подставляя $x = c_0 \sqrt{n}$ в (19), получаем $g(x,n) = \exp(c_{10}n + c_{20})$, где c_{10} и c_{20} — константы, не зависящие от параметров распределения (1), так как они определяются всеми семиинвариантами случайной величины L_0 (10) при n=1. Наиболее просто рассчитать эти константы методом Монте-Карло по формуле

$$c_{10}n + c_{20} = \ln \frac{P_n^*(H_1 | H_0)}{\Phi(-c_0\sqrt{n})},$$

где $P_n^*(H_1 \mid H_0)$ – полученные моделированием значения вероятности ошибки $P(H_1 | H_0)$.

Уточненная для больших уклонений асимптотически точная формула для вероятности ошибки $P(H_1 | H_0)$ окончательно принимает вид:

$$P(H_1 | H_0) \to \Phi(-c_0 \sqrt{n}) \exp(c_{10} n),$$
 (20)

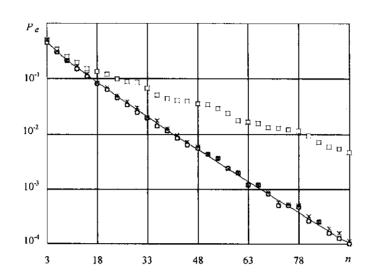
где $c_{10} \approx 0.06$.

Аналогичное уточнение для вероятности ошибки $P(H_0 \mid H_1)$, основанное на похожести формул (11) и (17), приводит к асимптотически точному выражению

$$P(H_0 | H_1) \to 2\Phi(-c_1\sqrt{n})\exp(c_{11}n + c_{21}),$$
 (21)

где $c_{11}\approx -0.05,\, c_{21}\approx 0.18.$ Моделирование. Для проверки точности полученных асимптотических формул проведено моделирование на ЭВМ алгоритмов различения (6)-(8). Объем испытаний для каждого п составил 1,6 · 10 4 Моделирование при различных наборах параметров распределений (1), (2) подтвердило вывод о независимости характеристик алгоритма различения от них. На рисунке сплошная кривая соответствует теоретической средней вероятности ошибки МП-алгоритма (6)

$$P_{e} = \frac{1}{2} \left[P(H_{1} \mid H_{0}) + P(H_{0} \mid H_{1}) \right], \tag{22}$$



рассчитанной по формулам (20), (21). Полученные моделированием значения средней вероятности ошибки МП-алгоритма (6) показаны на рисунке кружками, КП-алгоритма (7) — крестиками, КП-алгоритма (8) — квадратиками. Видно, что теоретическая кривая P_e (22) хорошо соответствует модельным значениям для произвольных $n \ge 3$. Заметим, что минимальный объем выборки n, начиная с которого возможно различение с нетривиальной $P_e < 0,5$ распределений с неизвестными параметрами сдвига и масштаба, равен 3. Моделирование показало, что МП-алгоритм (6) различает гипотезы H_0 и H_1 при n = 3 с $P_e \approx 0,44$, тогда как КП-алгоритмы (7), (8) — гипотезы с $P_e < 0,5$, начиная лишь с n = 4.

Из рисунка видно, что КП-алгоритм (8) заметно менее эффективен, чем алгоритмы (6) и (7). В то же время КП-алгоритм (7) почти не уступает МП-алгоритму (6). Так, при *n* > 10 средняя вероятность ошибки КП-алгоритма (7) превышает аналогичную характеристику МП-алгоритма (6) не более чем на 5 %. Поэтому для практического использования можно порекомендовать простой КП-алгоритм (7), синтез которого намного проще синтеза МП-алгоритма.

В качестве асимптотически точного выражения для вероятности ошибки $P(H_0 \mid H_1)$ КП-алгоритма (7) допустимо использовать (21), так как из проведенного выше анализа следует, что $L \stackrel{d}{\longrightarrow} Q$, $n \to \infty$ при справедливости гипотезы H_1 . Вывод асимптотически точной формулы для вероятности ошибки $P(H_1 \mid H_0)$ КП-алгоритма (7) полностью идентичен выводу формул (11) и (20) для МП-алгоритма за исключением того, что в (10) необходимо заменить z на $z = \Phi^{-1}(3/4) = 0,67448...$ Следовательно, асимптотически точная формула для вероятности ошибки $P(H_1 \mid H_0)$ КП-алгоритма (7) совпадает с выражением (20), где следует положить $c_0 = 0,59168...$, $c_{10} \approx 0,098$.

СПИСОК ЛИТЕРАТУРЫ

- 1. Золотарев В. М. Одномерные устойчивые распределения. М.: Наука, 1983.
- Resnick S. I. Heavy tail modeling and teletraffic data. Ithaca, N. Y., 1995. (Prepr. /School of ORIE, Cornell University).

- 3. Mandelbrot B. B. The Pareto-Levy law and the distribution of income // Internat. Econom. Rev. 1960. N 1. P. 79.
- 4. Моисеев С. Н. О нарушении центральной предельной теоремы для электронной концентрации слоя E_s из-за ее распределения по закону Коши // Геомагнетизм и аэрономия. 1998. 38, № 6. С. 181.
- Моисеев С. Н. Раздичение гипотез о функции распределения частоты экранирования спорадического слоя Е ионосферы // Автометрия. 1997. № 3. С. 76.
- 6. Боровков А. А. Математическая статистика. М.: Наука, 1984.
- 7. **Королюк В. С., Портенко Н. И., Скороход А. В., Турбин А. Ф.** Справочник по теории вероятностей и математической статистике. М.: Наука, 1985.
- 8. **Хохлов Ю. С.** Псевдоустойчивые распределения и их области притяжения // Фундаментальная и прикладная математика, 1996. **2**, № 4. С. 1143.

Воронежский государственный университет, E-mail: mois@rf.main.vsu.ru

Поступила в редакцию 15 марта 1999 г.