РОССИЙСКАЯ АКАДЕМИЯ НАУК СИБИРСКОЕ ОТДЕЛЕНИЕ

АВТОМЕТРИЯ

Nº 5

1996

УДК 535.247.049.7: 621.383.52

Г. Р. Кунакбаева, И. И. Ли

(Новосибирск)

ВЫБОР СПЕКТРАЛЬНОГО ДИАПАЗОНА ТЕПЛОВИЗИОННЫХ СИСТЕМ НА ОСНОВЕ МНОГОЭЛЕМЕНТНЫХ СdxHg1 – xTe-ФОТОДИОДОВ

Рассмотрена система Cd_xHg_{1-x}Te-фотодиод — устройство ввода с прямой инжекцией заряда. Анализируется температурное разрешение тепловизионных систем на их основе с многоэлементными фотоприемниками линейчатого и матричного типов в диапазоне 3-14 мкм.

Введение. Расширение в длинноволновую область (8-14 мкм) инфракрасного диапазона фотоприемных устройств (ИК ФПУ) с фотодиодами на Cd_xHg_{1-x}Te сопровождается быстрым снижением динамического сопротивления фотодиодов, что ограничивает возможность реализации потенциально более высокого температурного разрешения тепловизионных систем на их основе. В данной работе рассматриваются вопросы оптимизации спектрального диапазона для ИК ФПУ линейчатого и матричного типов со считыванием фотосигналов методом прямой инжскции [1-3].

1.1. Анализ системы Cd_xHg_{1-x}Te-фотодиод — прямоинжекционное устройство ввода. Фотодиоды Cd_xHg_{1-x}Te c x, меньшими 0,25, не аппроксимируются «классической» моделью фотодиода:

$$I_{\Phi,\Pi} = \eta_{\kappa} I_{\Phi} + I_0 \Big[1 - \exp(-\beta U_{\Phi,\Pi}) \Big] + U_{\Phi,\Pi} / R_p, \tag{1}$$

где η_{κ} — квантовая эффективность фотодиода; I_0 — ток насыщения фотодиода; R_p — шунтирующее сопротивление; I_{ϕ} — ток фонового излучения; $U_{\phi \mu}$ напряжение смещения на фотодиоде.

В данной работе при анализс системы Cd_xHg_{1-x}Te-фотодиод — прямоинжекционное устройство ввода применяется более совершенная модель фотодиода [4]. Ниже приведем основные выражения, используемые при расчетах.

Ток фотодиода вычисляется по соотношениям:

$$I_{\Phi JI} = \eta_{\kappa} I_{\Phi} + I_{JU\Phi} + I_{rest} + I_{T} + U_{\Phi JI} / R_{\rho}$$
⁽²⁾

(где I_{лиф} — диффузионная компонента тока; I_{ген} — генерационная компонента тока; I_т — туннельная компонента тока);

$$I_{\text{диф}} = qA \left[\frac{D_p}{l_p} p_{n0} \text{cth} \begin{pmatrix} l_n \\ l_p \end{pmatrix} + \frac{D_n}{l_n} n_{p0} \text{cth} \begin{pmatrix} l_p \\ l_n \end{pmatrix} \right] \left[\exp \left(\frac{qU_{\Phi\Pi}}{kT} \right) - 1 \right];$$
$$I_{\text{ress}} = \frac{qn_1 W_{\text{OH3}}}{r_0} \frac{2\text{sh}(qU_{\Phi\Pi}/2kT)}{q(U_{bi} = U_{\Phi\Pi})/kT} f(b).$$

Здесь

.

$$W_{\text{OII3}} = \frac{qn_1}{\tau_0} \left[\frac{2\epsilon_S\epsilon_0}{q} \frac{(N_a - N_{\text{R}})}{N_a N_{\text{R}}} \left((U_{bi} - U_{\Phi \Pi}) - \frac{2kT}{q} \right) \right];$$

$$f(b) = \int_0^\infty \frac{dx}{x^2 + 2bx + 1}; \qquad b = \exp\left(-\frac{qU_{\Phi \Pi}}{2kT}\right) \operatorname{ch}\left[\frac{E_t - E_i}{kT} + \frac{1}{2}\ln(\tau_{eO}/\tau_{hO})\right];$$

$$I_\tau = \left(\frac{2m_e^*}{E_g}\right)^{1/2} \frac{q^3 E U_{\Phi \Pi}}{4\pi^2 h^2} \exp\left[-\frac{4(2m_e^*)^{1/2} E_g^{3/2}}{3qhE}\right];$$

 l_n, l_p — длины нейтральных областей; U_{bi} — контактная разность потенциалов; E — напряженность поля в p—n-переходе; A — площадь фотодиода; остальные обозначения аналогичны принятым в [5].

Обнаружительная способность определяется выражением

$$D_{\lambda\Pi3C}^{*} = \frac{(AT_{\rm H}/2)^{1/2} \eta_{I} \eta_{R}}{(\hbar c/\lambda) (Q_{1}^{2} + Q_{2}^{2} + Q_{3}^{2} + Q_{4}^{2} + Q_{5}^{2})^{1/2}},$$
(3)

где $T_{\rm H}$ — время накопления; η_1 — коэффициент ввода тока; Q_1 , Q_2 — тепловой шум и шум типа 1/f входного МДП-транзистора устройства ввода (количество шумовых электронов); Q_3 — шум фотодиода; Q_4 — шум фотодиода типа 1/f; ћ — постоянная Планка; c — скорость света; λ — длина волны излучения; Q_5 — прочие шумы (шум измерительного канала и т. д.);

$$Q_{1}^{2} = \frac{2kTC_{BB}g_{BX}R_{R}\alpha_{1}}{q^{2}(1+g_{BX}R_{R})} \left[1 - \exp\left(-T_{H}\frac{1+g_{BX}R_{R}}{R_{R}C_{BX}}\right) \right] + \frac{2kTg_{BX}\alpha_{1}}{q^{2}(1+g_{BX}R_{R})^{2}} \left[T_{A} - \frac{R_{R}C_{BX}}{1+g_{RX}R_{R}} \exp\left(-T_{H}\frac{1+g_{BX}R_{R}}{R_{E}C_{BX}}\right) \right];$$
(4)

$$Q_{2}^{2} = \frac{2KI_{\pi_{1}}^{2}}{WL(q(C_{0x} + C_{\mu}))^{2}(R_{\mu}C_{bx})^{2}} \int_{\omega_{H}}^{\omega} \frac{2}{\omega(\omega_{0}^{2} + \omega^{2})(a^{2} + \omega^{2})} \sin^{2}\frac{\omega T_{H}}{2} d\omega + \frac{2KI_{\pi_{1}}^{2}}{WL(q(C_{0x} + C_{\mu}))^{2}} \int_{\omega_{H}}^{\omega} \frac{2\omega}{(\omega_{0}^{2} + \omega^{2})(a^{2} + \omega^{2})} \sin^{2}\frac{\omega T_{H}}{2} d\omega; \qquad (5)$$

$$Q_{3}^{2} = \frac{\left(g_{\rm BX}R_{\rm B}\right)^{2}}{q^{2}\left(1 + g_{\rm BX}R_{\rm B}\right)^{2}} \left(qI_{\Phi,\rm B} + \frac{2kT\alpha_{2}}{R_{\rm B}}\right) \left(T_{\rm a} - \frac{R_{\rm B}C_{\rm BX}}{1 + g_{\rm BX}R_{\rm B}} \exp\left(-T_{\rm b}\frac{1 + g_{\rm BX}R_{\rm B}}{R_{\rm B}C_{\rm BX}}\right)\right); \quad (6)$$

$$Q_{4}^{2} = 2\alpha^{2} (I_{\Phi \Pi} - \eta_{\kappa} I_{\Phi})^{2} \frac{g_{Bx}^{2}}{q^{2} C_{Bx}^{2}} \int_{\omega_{H}}^{a} \frac{2}{\omega(\omega_{0}^{2} + \omega^{2})(a^{2} + \omega^{2})} \sin^{2} \frac{\omega T_{H}}{2} d\omega, \qquad (7)$$

		Таблица 1
Обозначение	Параметр	Численное значение
μ	Подвижность неосновных носителей	$500 \text{ cm}^2 \cdot \text{B} \cdot \text{c}^{-1}$
φ_F	Уровень Ферми	0,53 B
N _д	Концентрация доноров в подложке	$7 \cdot 10^{14} \text{ cm}^{-3}$
C _{0x}	Удельная емкость диэлектрика	$4.2 \cdot 10^{-8} \Phi/cm^2$
V _{FB}	Напряжение плоских зон	0
ε ₀ ε _s	Диэлектрическая проницаемость Cd _x Hg _{1-x} Te	1,55 · 10 ⁻¹² Ф/см
N ₅₅	Плотность поверхностных состояний	10 ⁹ cm ⁻²
W, L	Длина и ширина канала входного затвора	60, 14 мкм
С _{ЗН}	Емкость затвора накопления	1,5 πΦ
C _{BX}	Полная емкость входного узла ФПУ	1,0 пФ
α ₁ , α ₂ , γ	Численные коэффициенты	2, 2, 2
α, Κ	То же	$10^{-3}, 1, 5 \cdot 10^{-24}$
A	Площадь фотодиода	2,5 · 10 ⁻⁵ см ²
η_{κ}	Квантовая эффективность фотодиода	0,4

где $a = (1 + g_{\text{вк}}R_{\pi})/R_{\pi}C_{\text{вк}}; \omega_0 = \pi/T_{\mu}; \alpha, \alpha_1, \alpha_2, K$ — численные коэффициенты (табл. 1). Интегралы в выражениях (5), (7) вычислялись численными методами. В диапазоне изменений $\omega_{\mu} \sim (100 - 1000)^{-1}T_{\mu}^{-1}$ значения интегралов в выражениях (5), (7) меняются не более чем на несколько процентов. Обнаружительная способность ФПУ с «идеальными» устройствами считы-

обнаружительная способность $\Phi \Pi Y$ с «идеальными» устройствами считывания (т. е. $D_{\lambda \phi \eta}^*$ ограничена лишь тепловыми шумами фотодиодов) вычисляется по соотношению

$$D_{\lambda \Phi \Pi}^{*} = \frac{(A)^{1/2} \eta_{\kappa}}{\frac{hc}{q\lambda} \left(\frac{4kT\alpha_{2}}{R_{\pi}} + 2q\eta_{\kappa}I_{\Phi}\right)^{1/2}}.$$
(8)

Обнаружительная способность в режиме ограничения фоном (ОФ) $D^*_{\lambda O \Phi}$ вычисляется по соотношению (8) при $R_{\mu} \sim \infty$.

Массив исходных электрофизических и конструктивных параметров фотоприемников и устройств считывания приведен в табл. 1 и 2 соответственно.

		Таблица 2
Обозначение	Параметр	Численное значение
<u></u>	Концентрация доноров	$10^{15} - 10^{17} \text{ cm}^{-3}$
Na	Концентрация акцепторов	$10^{15} - 10^{17} \text{ cm}^{-3}$
σ_e, σ_h	Сечение захвата электронов и дырок	10 ⁻¹⁵ см ²

Рис. І. Расчетные зависимости $D_{A\Pi 3C}^*$ от U_G при $T_{\rm H} = 3 \cdot 10^{-4}$ с, x = 0.21, $\eta_{\rm K} = 0.4$, T = 77 K: $I - N_a = 1 \cdot 10^{15} \text{ см}^{-3}, N_t = 0, 1N_a; 2 - N_a = 1 \cdot 10^{15} \text{ см}^{-3}, N_t = 0, 2N_a; 3 - N_a = 3 \cdot 10^{15} \text{ см}^{-3}, N_t = 0, 2N_a; 3 - N_a = 3 \cdot 10^{15} \text{ см}^{-3}, N_t = 0, 2N_a; кривыс I' - 4' рассчитывались при <math>T = 60 \text{ K}$

Полученные численным моделированием электрофизические и фотоэлектрические параметры Cd_xHg_{1-x}Te-фотодиодов хорошо соответствуют литературным данным [6, 7].

На рис. 1 приведены расчетные зависимости $D_{\lambda\Pi 3C}^*$ от напряжения смещения U_G на входном затворе МДП-транзистора устройства ввода при I_{Φ} = = 1 · 10⁻⁸ A, T_{μ} = 3 · 10⁻⁴ c, T = 77 и 60 К для x = 0,21. При T = 77 К (λ_{rp} = 1,24/ E_g = 11,2) N_a = 1 · 10¹⁵ см⁻³, N_r = 0,1 N_s , $g_{\rm bx}R_{\rm R}(U_{\rm \Phi II}$ = 0) ~0,9 (кривая I). Обнаружительная способность $D^*_{\lambda\Pi 3C}$ в максимумс ($U_G = U_{G_0}$) равна 1,9 · 10¹¹ см · В⁻¹/Гц^{1/2}, $D_{\lambda\phi\Lambda}^* = 2,1 \cdot 10^{11}$ см · В⁻¹/Гц^{1/2}, тогда как $D_{\lambdaO\phi}^* = 5 \cdot 10^{11}$ см · В⁻¹/Гц^{1/2}, для $N_a = 3 \cdot 10^{15}$ см⁻³, $N_c = 0,1N_a$ (кривая 3) $D_{\lambda II3C}^* = 1,2 \cdot 10^{11} \text{ см} \cdot \text{B}^{-1}/\Gamma \mu^{1/2},$ $g_{\rm BX}R_{\rm ff}(U_{\Phi\Pi}=0)\sim 0.6,$ $D^*_{\lambda\Phi\Pi} = 1.8 \times$ $\times 10^{11}$ см $\cdot B^{-1}/\Gamma u^{1/2}$. Охлаждение ФПУ до 60 К ($\lambda_{rp} = 11,74$ мкм) позволит повысить $D_{\lambda\Pi3C}^*$ до уровня, близкого к режиму ОФ (кривые I' и 3'). При этом $g_{\rm BX}R_{\rm g}$ возрастает до 12 и 4,8 соответственно, а обнаружительная способность в максимуме $D_{\lambda \Pi 3C}^* = 4,7 \cdot 10^{11} \text{ см} \cdot \text{B}^{-1}/\Gamma \mu^{1/2}, \ D_{\lambda \Phi \Pi}^* = 4,7 \cdot 10^{11} \text{ см} \cdot \text{B}^{-1}/\Gamma \mu^{1/2}$ для кривой l' и $D_{\lambda \Pi 3C}^* = 4,0 \cdot 10^{11} \text{ см} \cdot \text{B}^{-1}/\Gamma \mu^{1/2}, \ D_{\lambda \Phi \Pi}^* = 4,1 \times 10^{11} \text{ см} \cdot \text{B}^{-1}/\Gamma \mu^{1/2}$ $\times 10^{11}$ см · B⁻¹/Гц^{1/2} для кривой 3', $D_{\lambda O \Phi}^* = 5.3 \cdot 10^{11}$ см · B⁻¹/Гц^{1/2}. Рост $D_{\lambda O \Phi}^*$ с уменьшением температуры обусловлен увеличением λ_{max} при фиксированном значении I_ф. При x = 0,2 для достижения обнаружительной способности, близкой к

режиму ОФ даже при $N_a = 1 \cdot 10^{15}$ см⁻³, необходимо охлаждение ФПУ до температуры 50 К. При этой температуре $\lambda_{\rm rp} = 14,5$ мкм вследствие уменьшения ширины запрещенной зоны. Для N_a, больших 2 · 10¹⁵ см⁻³, дальнейшее снижение температуры уже малоэффективно. Так, например, при $N_a =$ = 3 · 10¹⁵ см⁻³ $D_{\lambda_{\rm H3C}}^{*} = 6,8 · 10^{10}$ см · Гц^{-1/2}/Вт⁻¹, т. е. почти в 5 раз ниже $D_{\lambda_{\rm PH}}^{*} = 3,6 · 10^{11}$ см · Гц^{-1/2}/Вт⁻¹ и в 10 раз ниже $D_{\lambda_{\rm OP}}^{*} = 6,6 \times$ $\times 10^{11} \text{ см} \cdot \Gamma u^{-1/2} / \text{Br}^{-1}$.

Как следует из рис. 1, уже для x = 0,21 (кривые 3', 4') при $U_G > U_{G_0}$ проявляется значительное уменьшение $D^*_{\rm AD3C}$. С ростом напряжения смещения начинает преобладать туннельная компонента тока и соответственно уменьшается R_n. С уменьшением ширины запрешенной зоны, температуры, а также с ростом N_a эти зависимости проявляются в более резкой форме. Так, для

Рис. 2. Расчетные зависимости D_{λ}^* от λ_{cp} при $T_{\rm H} = 3 \cdot 10^{-4}$ с, $I_{\rm Ip} = 1 \cdot 10^{-8}$ А, $\eta_{\rm K} = 0.4$, T = 77 К:

I — режим ОФ; 2 — $D_{\lambda\Pi3C}^*$, $N_a = 1 \cdot 10^{15}$ см⁻³, $N_t = 0,1N_a$; 3 — $D_{\lambda\Pi3C}^*$, $N_a = 3 \cdot 10^{15}$ см⁻³, $N_t = 0,1N_a$; 4 — $D_{\lambda\Phi\Pi}^*$, $N_a = 1 \cdot 10^{15}$ см⁻³, $N_t = 0,1N_a$; кривые 2'—5' рассчитывались при T = 60 K; 5 — $D_{\lambda\Phi\Pi}^*$, $N_a = 3 \cdot 10^{15}$ см⁻³, $N_t = 0,1N_a$; $N_t = 0,1N_a$

 $x = 0,2, N_a = 2 \cdot 10^{15}$ см⁻³ и T = 50 К увеличсние U_G от U_{G_0} на 20 мВ приводит к уменьшению $D_{\lambda\Pi 3C}^*$ болес чем в 2 раза. Это налагает ограничение на величину разброса электрофизических параметров фотодиодов, в частности, на однородность состава подложки, концентрацию легирующей примеси и пороговых напряжений ΔU_G под входным затвором устройств ввода ч является основным фактором, ограничивающим возможность создания ФПУ на основе многоэлементных Cd_xHg_{1-x}Te-фотодиодов с длиной волны, превышающей 13—14 мкм, даже за счет снижения температуры до 50—60 К.

На рис. 2 приведены расчетные зависимости $D_{\lambda \Pi 3C}^*$, $D_{\lambda \Phi d}^*$, $D_{\lambda O\Phi}^*$ от λ_{rp} , $I_{\Phi} = 1 \cdot 10^{-8}$ А, $T_{\mu} = 3 \cdot 10^{-4}$ с для T = 77 и 60 К. Из рисунка следует, что область применимости системы Cd_xHg_{1-x}Te-фотодиод — прямоинжекционное устройство при $N_a = 3 \cdot 10^{15}$ см⁻³, T = 77 К и $I_{\Phi} = 1 \cdot 10^{-8}$ А ограничена до $\lambda_{rp} \sim 11$ мкм, а при $N_a = 1 \cdot 10^{15}$ см⁻³ — до $\lambda_{rp} \sim 12$ мкм. В болсе длинноволновой области предпочтительнее использовать другие типы устройств считывания либо устройства с прямой инжекцией дополнить буферным каскадом [8].

1.2. Анализ температурного разрешения ИК ФПУ на основе $Cd_xHg_{1-x}Te$ -фотодиодов. Основным параметром тепловизионных систем является разность температур, эквивалентная шуму ΔT_{ut} . Этот параметр вычисляяся по соотношению [9]

$$\Delta T_{\rm tu} = \frac{4(2/T_{\rm H})^{1/2}}{\frac{\varphi_p^2}{f^2} (A)^{1/2} \Gamma_{\rm opt} \int_{\lambda_a}^{\lambda_{\rm rp}} \frac{d(dR/d\lambda)}{dT} D_{\lambda}^* (\lambda_{\rm rp}, \lambda_a, T_{\rm p}) \Delta \lambda},\tag{9}$$

где $dR/d\lambda$ — спектральная энергетическая светимость черного тела; φ_p/f — относительное отверстие оптики; f — фокусное расстояние оптики; Γ_{opt} — оптическое пропускание системы; T_{ϕ} — температура фона.

 $I - T_{\rm H} = 1,6 \cdot 10^{-2}$ с для ФПУ с $D_{\rm O\Phi}^{*}$; $2 - T_{\rm H} = 2,9 \cdot 10^{-3}$ с для ФПУ с $D_{\rm O\Phi}^{*}$; $3 - T_{\rm H} = 2,9 \cdot 10^{-3}$ с для ФПУ с $D_{\rm AH3C}^{*}$; $\vec{\tau} - T_{\rm H} = 3 \cdot 10^{-4}$ с для ФПУ с $D_{\rm O\Phi}^{*}$, $5 - T_{\rm H} = 3 \cdot 10^{-4}$ с для ΦΠУ с $D_{\lambda\Pi 3C}^*$

Перед расчетом $\Delta T_{\rm m}$ вычислялись зависимости E_e , $D_{\rm i}^*$ и ток, обусловленный фоновым излучением I_{ϕ} , от λ_{rp} :

$$I_{\Phi} = \frac{\pi q A}{\hbar c} \sin^2 \frac{\theta}{2} \int_{\lambda_0}^{\lambda_{rp}} \lambda \, \frac{dR/d\lambda}{dT} \, d\lambda, \tag{10}$$

где θ = arctg($\varphi_p/2f$); D_{λ}^* — обнаружительная способность $D_{\lambda\Pi 3C}^{+}$, $D_{\lambda\Phi\Pi}^{+}$ и $D_{\lambdaO\Phi}^{-}$. На рис. 3 приведены расчетные зависимости $\Delta T_{\mu\nu}(\lambda_{\mu\nu})$ при $\lambda_{\mu\nu} = 2$ мкм, $\varphi_p/f = 1/2$, T = 77 К и времени накопления в качестве параметра. Кривая Iсоответствует максимально возможному времени накопления $T_{\rm H} = 1.6 \times$ × 10⁻² с (время накопления равно времени кадра) при стандартной кадровой частоте 60 кадров/с. Для матричного ФПУ (диапазон 3-5,4 мкм, фототок $I_{\rm \Phi}=5,5\,\cdot\,10^{-9}\,{\rm A}$) время накопления $T_{\rm H}=2,9\,\cdot\,10^{-3}$ (кривая 2) ограничивается зарядовой емкостью интегратора. Значение $Q_{3H} = 4 \cdot 10^7$ электронов, принятое при расчетах, максимально для данного типа матричных устройств считывания по литературным источникам [10]. Время накопления $T_{\rm H} = 3 \times$ × 10⁻⁴ (кривая 4) характерно для технических телевизионных систем с частотой 25 кадров/с на основе линейки фотоприемников 1 × 128 с разрешением 128×128 .

На рис. 4 приведены расчетные зависимости $\Delta T_{\rm m}(\lambda_{\rm m})$. $\lambda_{\rm a} = 8$ мкм при $\varphi_p/f = 1/2, T = 77$ и 60 К, $T_{\rm H} = 3 \cdot 10^{-4}$ с. Отметим качественное отличие данных от зависимостей на рис. 3 для $\lambda_{-p} = 3-6$ мкм. В диапазоне 8—10,5 мкм $I_{\rm d} = 8.4 \cdot 10^{-8}$ А, т. е. более чем на порядок выше, чем в диапазоне 3—5,4 мкм. Поэтому для диапазона 8—10,5 мкм максимальное время накопления T_н = = 1,9 · 10⁻⁴ с при той же зарядовой емкости интегратора. Резкое ухудшение температурного разрешения при λ_{rp} , больших 11 мкм, связано в основном с быстрым падением динамического сопротивления Cd_xHg_{1-x}Te-фотодиодов и соответственно снижением эффективности ввода тока.

Как видно из рис. 4, при $\lambda_{rp} \sim 11$ мкм и T = 77 К температурное разрешение $\Delta T_{
m m}$ ~15 мК. В диапазоне 3—5 мкм матричные ФПУ (при равной зарядовой

Рис. 4. Зависимости температурного разрешения тепловизионной системы $\Lambda T_{\rm III}$ от $\lambda_{\rm IP}, \varphi_p/f = 1/2, T_{\rm R} = 3 \cdot 10^{-4}$ с, T = 77 K, $\lambda_a = 8$ мкм, $N_i = 0, 1N_a, Q_5 = 0, Q_6 = 200$ электронов: $I - для \Phi \Pi Y c D_{\rm O\Phi}^{*}; 2 - для \Phi \Pi Y c D_{\lambda\Pi 3C}^{*}, N_a = 1 \cdot 10^{15}$ см⁻³; 3 -- для $\Phi \Pi Y c D_{\lambda\Pi 3C}^{*}, N_a = 1 \cdot 10^{15}$ см⁻³; 4 -- для $\Phi \Pi Y c D_{\lambda\Phi JI}^{*}, N_a = 1 \cdot 10^{15}$ см⁻³; кривые 2'-4' рассчитывались при T = 60 K

емкости интегратора 4 · 10⁷ электронов) обеспечивают более высокое температурное разрешение $\Delta T_{ur} \sim 12$ мК. Охлаждение ФПУ до 60 К теоретически позволит повысить температурное разрешение тепловизора до 10 мК при $\lambda_{rp} \sim 12-14$ мкм. При этом следует отметить, что для реализации преимуще-

ства в температурном разрешении диапазона 8-12 мкм необходимо:

— существенно увеличить зарядовую емкость интегратора (до 2—5 · 10⁸ электронов);

— технологический разброс пороговых напряжений не должен превышать 10—15 мВ; в диапазоне 3—5 мкм требования ниже (30—50 мВ);

--- обеспечить более высокие требования на однородность состава подложки.

Другим важнейшим критерием выбора спектрального диапазона тепловизионных систем является зависимость температурного разрешения от температуры объекта исследований. На рис. 5 приведены зависимости $\Delta T_{\rm m}$ от T_{ϕ} для диапазонов 2—5,4 и 8—12 мкм при $T_{\rm H} = 3 \cdot 10^{-4}$ с. Для диапазона 3—5,4 мкм основной причиной снижения температурного разрешения относительно предельно возможного (кривыс 5 и 6) является kTC-компонента шума (первый член выражения (5), а также Q_5). Оценки показывают, что при $T_{\phi} = 250$ К $I_{\phi} = 7 \cdot 10^{-10}$ А, а накопленный заряд составляет всего лишь 5 $\cdot 10^5$ электронов. Для диапазона 8—12 мкм при $T_{\phi} = 250$ К, температуре ФПУ 77 К, $I_{\phi} = 5,5 \cdot 10^{-8}$ А основной причиной снижения температурного разрешения является недостаточно высокое динамическое сопротивление фотодиодов. Это подтверждается расчетными зависимостями температурного разрешения при температуре ФПУ T = 60 К. В данном диапазоне температурное разрешение для ФПУ с «идеальными» устройствами считывания близко к предельно возможному (зависимость *I* на рис. 5).

Значительное ухудшение температурного разрешения в диапазоне 3—5 мкм с понижением температуры фона — одна из основных причин, стимулирующих работы по созданию тепловизионных систем в диапазоне 8—12 мкм.

Достоверность оценок $D_{\lambda\Pi 3C}^*$ ИК ФПУ и температурного разрешения тепловизионных систем на их основе ограничивается точностью используемых аналитических выражений, описывающих шумы системы, в частности шумы типа 1/*f*. Численные значения α , α_1 , α_2 , γ , *K* взяты из [2, 11, 12], но результаты экспериментальных измерений этих коэффициентов существенно отличаются у разных авторов. Уточненные модели шумов, полученные из экспериментальных исследований конкретных фотоприемников и устройств считывания, могут быть легко встроены в программу.

Заключение. В работе исследовалась система Cd_xHg_{1-x}Te-фотодиод прямоинжекционное устройство ввода. Рассчитаны основные характеристики данной системы — эффективность ввода, обнаружительная способность и температурное разрешение — как функции температуры фотоприемника и объекта исследования, входного напряжения, параметров фотодиода, а также зарядовой емкости интегратора. Проведенный анализ позволяет выбрать обеспечивающий минимальное температурное разрешение спектральный диапазон тепловизионной системы на основе многоэлементных фотоприемников линейчатого и матричного типов в диапазоне 3—14 мкм.

СПИСОК ЛИТЕРАТУРЫ

- 1. Felix P., Moulin M., Munier B. et al. CCD readout of infrared hybrid focal plane arrays // IEEE Trans. Electron. Dev. 1980. ED-27, N 1. P. 175.
- 2. Chow K., Roud J. P., Sub D. H., Blackwell J. P. Hybrid infrared focal plane arrays // IEEE Trans. Electron. Dev. 1982. ED-29, N 1. P. 3.
- Кунакбаева Г. Р., Ли И. И., Черспов Е. И. Система фотодиод ПЗС-устройства ввода с прямой инжекцией для многоэлементных ИК ФПУ // Радиотехника и электроника. 1993. Вып. 5. С. 922.
- Гсрасименко Н. Н., Грищенко И. В., Сафронов Л. Н. Пакет программ для оценок оптических и электрофизических параметров Cd_xHg_{1-x}Te (0,19 × 0,4). Новосибирск, 1990. (Препр. /АН СССР. Сиб. отд-ние. ИФП; № 5).
- 5. Зи С. Физика полупроводниковых приборов. М.: Мир, 1984. Ч. 1.

- Rogalski A., Piotrowski J. Intrinsic infrared detectors // Progr. Quantum Electron. 1988. 12, N 2/3. P. 87.
- Бурлаков И. Д. Состояние и перспективы создания матричных фотоприемников ИК-диапазона спектра на основе полупроводниковых соединений теллуридов кадмия и ртути // Зарубежная военная техника. М., 1990. Вып. 5 (113). С. 3.
- 8. Bluzer M., Jensen A. // Opt. Eng. 1987. 26, N 3. P. 241.
- 9. Госсорг Ж. Инфракрасная термография. М.: Мир, 1988.
- Woolaway J. T. New sensor technology for 3- to 5-µm imaging band // Photonics Spectra. 1991. N 2. P. 113.
- 11. Reimbold G. Noise associated with charge injection into a CCD by current integration through a MOS transistor // IEEE Trans. Electron. Dev. 1985. ED-32, N 5. P. 871.
- Tobin S. P., Iwasa S., Tredwell T. J. 1/fnoise in (Hg, Cd) Te photodiodes // IEEE Trans. Electron Dev. 1980. ED-27, N 1. P. 43.

Поступила в редакцию 29 апреля 1996 г.

. 29

Реклама продукции в нашем журнале — залог Вашего успеха!