РОССИЙСКАЯ АКАДЕМИЯ НАУК

СИБИРСКОЕ ОТДЕЛЕНИЕ

АВТОМЕТРИЯ

Nº 1

1995

УДК 517.43

Ю. Е. Воскобойников

(Новосибирск)

УСТОЙЧИВЫЙ АЛГОРИТМ ВОССТАНОВЛЕНИЯ ИЗОБРАЖЕНИЯ ПО НЕПОЛНОМУ НАБОРУ ПРОЕКЦИОННЫХ ДАННЫХ

На основе сингулярного разложения оператора Радона строится регуляризующий алгоритм восстановления изображения по неполному набору проекционных данных. Исследуется разрешающая способность и устойчивость этого алгоритма. Предложены конструктивные алгоритмы выбора параметров регуляризации.

Введение. В настоящее время при исследовании внутренних структур объектов различной физической природы (медицина, контроль изделий, низкотемпературная плазма, аэродинамика) используются томографические методы [1, 2].

Суть этих методов заключается в следующем. Пусть исследуемые свойства объекта описываются функцией $\varphi(x, y)$ и в результате томографических измерений регистрируется функция $f(s, \theta)$, являющаяся результатом интегрирования $\varphi(x, y)$ вдоль прямой с уравнением $x\cos\theta + y\sin\theta - s = 0$, т. е.

$$f(s,\theta) = \iint_{\Omega} \varphi(x,y) \delta(x\cos\theta + y\sin\theta - s) dxdy, \qquad (1)$$

где $\delta(x)$ — дельта-функция; Ω — область определения $\varphi(x, y)$. Соотношение (1) часто называют интегральным преобразованием Радона, а $f(s, \theta)$ — проекцией функции $\varphi(x, y)$, снятой под углом θ .

Так как искомой является $\varphi(x, y)$, то основная задача вычислительной томографии — нахождение $\varphi(x, y)$ по зарегистрированным значениям проскций, т. е. обращение преобразования Радона. Эта задача является обратной, и степень ес некорректности определяется полнотой проекционных данных.

Считают, что проекции $f(s, \theta)$, зарегистрированные при значениях s, θ :

$$-a \le s \le a; \qquad 0 \le \theta \le 180^\circ, \tag{2}$$

составляют полный набор (a — «радиус» области Ω). Регистрация проекций при $\theta > 180^{\circ}$ в силу свойства $f(s, \theta + \pi) = f(-s, \theta)$ не дает дополнительной информации о $\varphi(x, y)$. Алгоритмы, решающие задачу восстановления изображения по полному набору, обсуждаются в многочисленных публикациях (например, [1-3]).

Однако в ряде схем измерений (особенно в физическом эксперименте) по техническим причинам угол θ может меняться в пределах, меньших 180°:

$$-\theta_{\max} \le \theta \le \theta_{\max},\tag{3}$$

где $\theta_{max} < 90^\circ$, что дает уже неполный набор проекций. Очевидно, что при $\theta_{max} = 90^\circ$ приходим к схеме (2). В отличие от «слабонеустойчивой» задачи восстановления с полным набором данных восстановление по неполному набору проекций оказывается «сильнонеустойчивой» задачей, что вызывает серьсзные затруднения при восстановлении изображений на практике. В работе [4]

приведен обзор различных методов решения таких задач, имеющих определенные достоинства и недостатки. В данной работе для восстановления изображения по неполному набору проекций используется сингулярное разложение оператора Радона, что позволяет: а) количественно охарактеризовать ухудшение обусловленности и потерю информативности томографического эксперимента; б) построить эффективный регуляризующий алгоритм; в) предложить содержательные и конструктивные подходы для выбора параметров этого алгоритма. Следует заметить, что в работах [5, 6], посвященных сингулярному разложению оператора Радона, эти важные для практики вопросы не были решены.

Построение регуляризующего алгоритма восстановления изображения. Первоначально рассмотрим построение решения операторного уравнения общего вида

$$R\varphi = f \tag{4}$$

на основе сингулярного разложения оператора R. Пусть R^* — сопряженный оператор, $\{\Phi_n\}, \lambda_n \ge 0, n = 0, 1, 2, ...,$ — ортонормированный набор собственных функций и собственных чисел оператора RR^* . Тогда функции

$$\psi_n = R^* \Phi_n / \lambda_n^{1/2}, \quad n = 0, 1, 2, ...,$$
 (5)

являются собственными функциями оператора R^*R , а сам оператор R имеет следующее сингулярное разложение:

$$R\varphi = \sum_{n=0}^{\infty} \mu_n \langle \varphi, \psi_n \rangle \Phi_n, \qquad (6)$$

где $\langle \varphi, \psi_n \rangle$ — скалярное произведение, определяющее коэффициенты разложения функции φ по базису $\{\psi_n\}, \mu_n - \hat{z}_n^{1/2}$ — сингулярные числа оператора R. Используя (6), решение уравнения (4) можно записать в виде

$$\varphi^{+} = \sum_{n=0}^{\infty} \varphi_{n}^{+} \psi_{n}, \qquad (7)$$

где

$$\varphi_n^+ = \begin{cases}
f_n/\mu_n, & \text{если } \mu_n > 0; \\
0, & \text{если } \mu_n = 0; \\
f_n = \langle f, \Phi_n \rangle.
\end{cases}$$

Решение φ^+ имеет минимальную норму среди всех элементов φ , доставляющих минимум $\|f - R\varphi\|$, и его называют нормальным решением [7].

Для применения изложенного подхода к уравнению (1) необходимо определить базисы $\{\Phi_n\}, \{\psi_n\}$. Поэтому введем некоторые определения и обозначения.

Следуя работе [6], определим весовые функции

$$\omega_1(s)=\frac{\pi}{2\sqrt[s]{1-s^2}},\qquad \omega_2(x,y)=\pi$$

и предположим: а) изображение $\varphi(x, y)$ определено в круге единичного радиуса и $\varphi^2(x, y)$ интегрируемо в этой области с весом $\omega_2(x, y)$, т. е. $\varphi(x, y) \in L_2(\Omega, \omega_2)$; б) проекции $f(s, \theta)$ снимаются под углами θ_i , j = 1, ..., M, определены в интервале I = [-1, 1] и $f^2(s, \theta)$ интегрируема с весом $\omega_1(s)$ на интервале I, т. е. $f(s, \theta_i) \in L_2^{(j)}(I, \omega_1)$.

Обозначим через R_i оператор (1), вычисляющий проекцию $f(s, \theta)$ при $\theta = \theta_i$ и осуществляющий преобразование $R_i : L_2(\Omega, \omega_2) \to L_2^{(j)}(I, \omega_1)$. Сопряженный оператор $R_i^* : L_2^{(j)}(I, \omega_1) \to L_2(\Omega, \omega_2)$ имеет вид

$$(R_{j}^{*}f(s,\theta_{j}))(x,y) = \frac{1}{\omega_{2}(x,y)} B_{j}(\omega_{1}(s)f(s,\theta_{j})),$$

$$U_{n}(\cos(\theta_{i}-\theta_{j}))/(n+1), \quad n = 0, 1, 2, ...,$$
(8)

где $U_n(s)$ — полином Чебышева второго рода. Рассматривая набор проекций $f(s, \theta_j), j = 1, 2, ..., M$, как вектор-функцию

 $f(s) = |f(s, \theta_1), f(s, \theta_2), ..., f(s, \theta_M)|^T$, оператор Радона, соответствующий f(s), можно представить вектором

$$R\varphi = \left| R_{1}\varphi, R_{2}\varphi, ..., R_{M}\varphi \right|^{T},$$

при этом $R: L_2(\Omega, \omega_2) \twoheadrightarrow \bigoplus L_2^{(j)}(I, \omega_1)$. Тогда сопряженный оператор R^* имеет вид

$$R^*f = \frac{1}{M}\sum_{j=1}^M R_j^*f(s,\theta_j).$$

Приведенное утверждение позволяет охарактеризовать структуру оператора $RR^* : \oplus L_2^{(j)}(I, \omega_1) \to \oplus L_2^{(j)}(I, \omega_1)$. Для этого представим пространство проекций $\oplus L_2^{(j)}(I, \omega_1)$ в виде суммы *М*-мерных подпространств F_n , n = 0, 1, 2, ... Базисом подпространства F_n является $\Phi_n(s)$. Подпространства F_n имеют следующие свойства: а) подпространства F_n ортогональны, т. е. если $f_1 \in F_k, f_2 \in F_l$, то для $k \neq l$

$$\langle f_1, f_2 \rangle_{\omega_1} = \int_{-1}^{1} f_1(s) f_2(s) \omega_1(s) ds = 0;$$
 (9)

б) подпространство F_n инвариантно по отношению к оператору RR^* , т. е. если $f \in F_n$, то $RR^* \in F_n$; в) в *M*-мерном подпространстве F_n действие оператора RR^* можно представить матрицей G_n размером $M \times M$ с элементами

$$\left\{G_n\right\}_{ij} = \frac{\sin((n+1)(\theta_j - \theta_i))}{M(n+1)\sin(\theta_j - \theta_i)}.$$
(10)

Матрица G_n является симметричной и допускает представление

$$G_n = V_n \Lambda_n V_n^T,$$

где $\Lambda_n = \text{diag}\{\lambda_{n,1}, ..., \lambda_{n,M}\}$ — диагональная матрица, составленная из собственных чисел $\lambda_{n,k} \ge 0$, V_n — ортогональная матрица, *k*-й столбец которой есть собственный вектор матрицы G_n , т. е.

$$G_{n,\mathbf{v}_{n,k}} = \lambda_{n,k} \mathbf{v}_{n,k}.$$

Таким образом, вектор-функция

$$\mathbf{v}_{n,k}\Phi_{n}(s) = \left\|\mathbf{v}_{n,k}(1)\Phi_{n}(s), \mathbf{v}_{n,k}(2)\Phi_{n}(s), ..., \mathbf{v}_{n,k}(M)\Phi_{n}(s)\right\|^{T},$$

где $v_{n,k}(i) - i$ -я проекция вектора $v_{n,k}$, является собственным элементом оператора RR^* , а система

$$\{v_{n,k}\Phi_n(s)\}, \quad k=1, 2, ..., M, \quad n=0, 1, 2, ...,$$

образует ортонормированный базис пространства проекций $\oplus L_2^{(j)}(I, \omega_1)$. Тогда из (5) следует, что функции

$$\psi_{n,k}(x, y) = R^* v_{n,k} \Phi_n(s) / \mu_{n,k}, \qquad \begin{array}{l} n = 0, 1, 2, ..., \\ k = 1, ..., M, \end{array}$$
(11)

где $\mu_{n,k} = \lambda_{n,k}^{1/2}$, образуют ортонормированный базис в пространстве изображений $L_2(\Omega, \omega_2)$ и

$$R\psi_{n,k} = \mu_{n,k} \mathsf{v}_{n,k} \Phi_n(s). \tag{12}$$

Учитывая (8), получаем консчное выражение для $\psi_{n,k}(x, y)$:

$$\psi_{n,k}(x, y) = \frac{1}{\pi M \mu_{n,k}} \sum_{j=1}^{M} v_{n,k}(j) U_n(x \cos \theta_j + y \sin \theta_j).$$
(13)

Обозначим:

- -

$$f_n(j) = \langle f, \Phi_n \rangle_{\omega_1} = \int_{-1}^{1} f(s, \theta_j) U_n(s) ds;$$
(14)

$$f_{n,k} = \sum_{j=1}^{M} f_n(j) \mathbf{v}_{n,k}(j).$$
(15)

Тогда из (7) следует, что нормальное решение уравнения (1) имеет вид:

$$\varphi^{+}(x, y) = \sum_{n=0}^{\infty} \sum_{k=1}^{M} \varphi^{+}_{n,k} \psi_{n,k}(x, y), \qquad (16)$$

где коэффициенты $\varphi_{n,k}^+$ определяются как

$$\varphi_{n,k}^{+} = \begin{cases} f_{n,k}/\mu_{n,k}, & \text{если } \mu_{n,k} > 0; \\ 0, & \text{если } \mu_{n,k} = 0. \end{cases}$$

Если проекционные данные известны точно и отсутствуют ошибки машинной арифмстики, то нормальное решение $\varphi^*(x, y)$ является «оптимальным» решением (в классе линейных алгоритмов), которое может быть построено по имеющейся в проекционных данных информации об изображении $\varphi(x, y)$.

К сожалению, при практической реализации встречаются известные трудности, обусловленные погрешностями проекционных данных, неточностью выполнения операций на ЭВМ и различной информативностью проекционных данных, которая определяется сингулярными числами $\mu_{n,k}$. Действительно, из соотношения (12) следует, что

$$f_{n,k} = \mu_{n,k} \varphi_{n,k}, \tag{17}$$

 $\varphi_{n,k} = \langle \varphi, \psi_{n,k} \rangle_{\omega_2} = \iint_{\Omega} \varphi(x, y) \psi_{n,k}(x, y) \omega_2(x, y) dx dy$

— коэффициенты разложения $\varphi(x, y)$ по базисным функциям $\{\psi_{n,k}(x, y)\}$. Если $\mu_{n,k} \approx 0$, то проскционные данные не содержат информации о составляющей $\varphi_{n,k}$ и ее вычисление неустойчиво к погрешностям проекционных данных. Так, если $f_{n,k}$ вычисляется с ошибкой $\eta_{n,k}$, то при делении на малую величину $\mu_{n,k}$ это даст существенную ошибку, которая никак не проявится в проекционных данных (типичная ситуация для некорректно поставленных задач). Следовательно, собственные значения матрицы G_n во многом определяют информативность той или иной схемы регистрации проекционных данных и устойчивость алгоритма восстановления изображения.

Проведенный численный анализ собственных чисел матрицы G_n , n = 0, 1, 2, ..., позволяет сделать следующие выводы.

1. Практический ранг р, матрицы G, равен

$$p_n = \min(M, n+1).$$
 (18)

Если M > n + 1, то матрица G_n является вырожденной и количество собственных чисел $\lambda_{n,k}$, практически не отличимых от нуля ($\lambda_{n,k} \leq 10^{-7}$), равно

$$\mathrm{def}(G_n)=M-n-1.$$

2. Отношение

$$C_n = \mu_{n, \max} / \mu_{n, \min},$$

где $\mu_{n, \max}, \mu_{n, \min}$ — максимальное и минимальное значения среди всех отличных от нуля собственных чисел $\mu_{n,k}$, увеличивается с уменьшением угла θ_{\max} и может достигать величин $10^3 + 10^4$ (например, при $\theta_{\max} = 50^\circ$, M = 10).

С учетом этих двух обстоятельств предлагается следующая форма регуляризующего алгоритма восстановления:

$$\varphi_{N,\alpha}(x, y) = \sum_{n=0}^{N} \sum_{k=1}^{p_n} \varphi_{n,k}(\alpha) \psi_{n,k}(x, y), \qquad (19)$$

где

$$\varphi_{n,k}(\alpha) = r_{n,k}(\alpha) f_{n,k}.$$

В качестве регуляризующего множителя $r_{n,k}(\alpha)$ примем

$$r_{n,k}(\alpha) = \frac{\mu_{n,k}}{\mu_{n,k}^2 + \alpha(\mu_{n,1}/\mu_{n,k})^2},$$
(20)

где α — параметр регуляризации, а числа $\mu_{n,k}$ упорядочены по убыванию.

Алгоритм (19) содержит два параметра: параметр N ограничиваст количество базисных функций по степени многочлена Чебышева («радиальная регуляризация» по переменной s), параметр α осуществляет регуляризацию вырожденных матриц G_n («угловая регуляризация»). Выясним влияние этих параметров на точность восстановления изображения и устойчивость алгоритма (19).

Ошибку восстановления $\varepsilon_{N, \alpha}(x, y) = \varphi(x, y) - \varphi_{N, \alpha}(x, y)$ можно представить суммой

$$\varepsilon_{N,\alpha}(x, y) = b_{N,\alpha}(x, y) + \xi_{N,\alpha}(x, y), \qquad (21)$$

57

где

5 Автометрия № 1, 1995 г.

где $\xi_{N,\alpha}(x, y)$ — случайная (обусловленная шумом регистрации проекционных данных) и систематическая $b_{N,\alpha}(x, y)$ (вызванная конечным числом проекций и введенной регуляризацией) ошибки. Если в качестве $\varphi(x, y)$ принять точнос нормальное решение $\varphi^+(x, y)$, то квадрат нормы систематической ошибки определяется как

$$\|b_{N,\alpha}\|^{2} = \sum_{n=0}^{N} \sum_{k=1}^{p_{m}} (1 - \mu_{\bar{n},k} r_{\bar{n},k}(\alpha))^{\hat{z}} (\varphi_{\bar{n},k}^{+})^{\hat{z}} + \sum_{n=N+1}^{\infty} \sum_{k=1}^{p_{n}} (\varphi_{n,k}^{+})^{2}.$$
(22)

К сожалению, это соотношение включает неизвестные коэффициенты разложения $\varphi_{n,k}^{-}$ и поэтому величину систематической ошибки косвенно определяют другими характеристиками алгоритма. В вычислительной томографии для этого используют так называемую функцию рассеяния точки (ФРТ) [1]. представляющую собой результат восстановления δ -функции, «приложенной» в точке (x_0 , y_0). Можно показать, что для алгоритма (19) ФРТ определяется соотношением

$$A_{N,\alpha}(x, y) = \frac{1}{M\pi} \sum_{n=0}^{N} \sum_{k=1}^{n-1} \frac{r_{n,k}(\alpha)}{\mu_{n,k}} S_{n,k}(x, y) S_{n,k}(x_0, y_0), \qquad (23)$$

где

$$S_{n,k}(x, y) = \sum_{j=1}^{M} v_{n,k}(j) U_n(x \cos \theta_j + y \sin \theta_j).$$

Очевидно, что чем лучше $A_{N,\alpha}(x, y)$ аппроксимируется δ -функцией, тем больше разрешающая способность алгоритма, меньше систематическая ошибка и более «тонкие структуры» изображения удается восстановить.

В качестве характеристики случайной ошибки $\xi_{N,a}(x, y)$ примем дисперсию $\sigma_{\ell}^{2}(x, y)$. Используя ортогональность базисных функций, можно доказать следующее неравенство:

$$\sigma_{\xi}^{2}(x, y) \leq \frac{o^{2}}{\pi^{2}M^{2}} \sum_{n=0}^{N} \left(\sum_{k=1}^{p_{n}} \frac{r_{n,k}^{2}(\alpha)}{\mu_{n,k}^{2}} \right) \left(\sum_{j=1}^{M} U_{n}^{2}(x\cos\theta_{j} + y\sin\theta_{j}) \right), \qquad (24)$$

где σ^2 — дисперсия шума проекционных данных.

Анализируя (22) — (24), можно сделать вывод о следующем противоречии между разрешающей способностью и устойчивостью алгоритма, а именно: при увеличении N и уменьшении α уменьшается систематическая ошибка, нс увеличивается дисперсия $\sigma_{\xi}^2(x, y)$ и наоборот. Это хорошо иллюстрируется рис. 1—3. На рис. 1 приведены графики $A_{N,\alpha}(x, 0)$ при $\alpha = 0$ (рис. 1, a) и $\alpha = 0,1$ (рис. 1, b) и $\hat{\sigma}_{max} = 90^{\circ}, M = 7$. На рис. 2 нанесены значения $\lg \sigma_{\xi}^2(x, 0)$ при $\alpha = 0$ (рис. 2, a), $\alpha = 0,1$ (рис. 2, b) и $\theta_{max} = 90^{\circ}, M = 7, \sigma^2 = 1$. На рис. 2 показаны значения $\lg \sigma_{\xi}^2(x, 0)$, соответствующие $\theta_{max} = 50^{\circ}, \alpha = 0$ (рис. 3, a) и $\alpha = 0,1$ (рис. 3, b), $M = 7, \sigma^2 = 1$. Кроме указанного противоречия, следует отметить существенное ухудшение обусловленности задачи при уменьшении θ_{max} (ср. рис. 2, a и 3, a, где увеличение дисперсии случайной ошибки восстановления составляет 10—50 раз). Из рисунков видно, что выбором N, α можн найти приемлемый компромисс между величинами систематической и случайной ошибок восстановления. В данной работе предлагается раздельный выбог параметров N, α .

Выбор параметров регуляризующего алгоритма. Заметим, что в работє [8] для выбора N был предложен подход, основанный на понятии наименьшегс размера изображения, которое может быть получено с использованием

азисной функции $\psi_{n,k}(x, y)$. Здесь предполагается выбор N осуществлять ис-

одя из точности аппроксимации проекционных данных. Пусть N_j — оптимальное значение, доставляющее минимум среднеквадатической ошибки

$$\Delta_j^2(N) = M\left[\sum_{i=1}^m \left(f(s_i, \theta_j) - f_N(s_i, \theta_j)\right)^2\right]$$

риближения ј-й проекции усеченным рядом Чебышева

$$f_N(s,\theta_j) = \sum_{n=0}^N f_n(j) U_n(s)$$

Puc. 2

Puc. 3

Тогда в качестве \widehat{N}_{om} примем величину

$$\widehat{N}_{omr} = \max_{j} N_{j}$$

Алгоритмы оценивания оптимальных значений N_j при различной априорной информации о шуме проекционных данных приведены в [9, 10] и здесь не рассматриваются.

Выбор α будем проводить из условия минимума среднеквадратической ошибки оценивания регуляризованных коэффициентов разложения

$$\varphi_{n,k}(\alpha) = r_{n,k}(\alpha) \tilde{f}_{n,k}(\alpha), \qquad (25)$$

определяемой функционалом

$$\Delta^2(\alpha) = M\left[\sum_{n=0}^N \sum_{k=1}^{p_n} (\varphi_{n,k}(\alpha) - \varphi_{n,k}^*)^2\right],$$

где $\varphi_{n,k}^+$ — точные коэффициенты нормального решения (16). При этом отдельно рассмотрим случаи известных и неизвестных дисперсий ошибок вычисления коэффициентов $\tilde{f}_{n,k}$.

Предположим, что дисперсии $\sigma_{i,j}^2 = D[\tilde{f}(s_i, \theta_j)]$ шума регистрации проекционных данных известны. Однако вычисление дисперсии $\sigma_{n,k}^2 = D[\tilde{f}_{n,k}]$ достаточно громоздко, поэтому ограничимся ситуацией равноточных измерений проекционных данных, т. е. $\sigma_{i,j}^2 = \sigma^2$. Тогда в силу ортогональности многочленов $U_n(s)$ и векторов $v_{n,k}$ имеет место равенство $\sigma_{n,k}^2 = \sigma^2$. В этом случае в качестве α_{onr} принимается значение α_p , удовлетворяющее условию

$$\beta_L(0,05) \le \rho(\alpha) \le \beta_L(0,95),$$
 (26)

где

$$\rho(\alpha) = \frac{1}{\sigma^2} \sum_{n=0}^{N} \sum_{k=1}^{p_n} (1 - \mu_{n,k} r_{n,k}(\alpha)) \tilde{f}_{n,k}^2,$$
$$L = \sum_{n=0}^{N} p_n.$$

Величины $\beta_L(0,05)$, $\beta_L(0,95)$ есть квантили уровней 0,05; 0,95 χ^2 -распределения с L степенями свободы. При $L \ge 20$ эти квантили хорошо аппроксимируются соответствующими квантилями нормального распределения с математическим ожиданием, равным L, и дисперсией 2L.

Найденная таким образом α удовлетворяет критерию оптимальности регуляризующего алгоритма (см. более подробно [10]).

Для вычисления α_{ρ} используется любой итерационный алгоритм решения нелинейного уравнения

$$\rho(\alpha) = L, \tag{27}$$

который завершается при выполнении условия (26).

В случае неизвестных дисперсий $\sigma_{i,j}^2$ шумов проекционных данных «квазиоптимальное» значение параметра α можно определить на основе метода перекрестной значимости (cross-validation method) [10, 11] из условия минимума функционала

$$u(\alpha) = \frac{1}{L} \sum_{n=0}^{N} \sum_{k=1}^{p_n} (1 - \mu_{n,k} r_{n,k}(\alpha))^2 \widetilde{f}_{n,k}^2 / \left[\frac{1}{L} \sum_{n=0}^{N} \sum_{k=1}^{p_n} (1 - \mu_{n,k} r_{n,k}(\alpha)) \right]^2.$$
(28)

Следует отметить высокую вычислительную эффективность предложенных алгоритмов выбора параметра α , так как они не требуют нахождения регуляризованных коэффициентов $\varphi_{n, k}(\alpha)$ или построения регуляризованного изображения $\varphi_{N, \alpha}(x, y)$ при каждом новом значении α в итерационных процедурах решения уравнения (27) или минимизации функционала (28).

......

Численная реализация регуляризующего алгоритма. Основная доля вычислительных затрат при построении изображения $\varphi_{N,\alpha}(x, y)$ идет на вычисление значений базисных функций $\psi_{n,k}(x, y)$, $\Phi_n(s)$ в соответствующих узлах и коэффициентов разложения $f_{n,k}$ проекционных данных.

Заметим, что базисные функции так же, как и матрицы G_n , могут быть определены априори — до восстановления изображения, так как они определяются только схемой томографического эксперимента. Поэтому для уменьшения времени восстановления изображения предлагается заранее произвести вычисление матриц $\psi_{n,k}(x_i, y_m)$, $v_{n,k}$, собственных чисел $\lambda_{n,k}$, с записью их на внешнем носителе. Нахождение коэффициентов разложения $\tilde{f}_{n,k}$ можно реализовать как произведение матрицы, аппроксимирующей интеграл (14) (также хранящейся на диске), на матрицу значений проекционных данных. Все это существенно уменьшает время восстановления, которое всего в 1,5—2 раза больше по сравнению с «быстрыми» сверточными алгоритмами.

Предложенный алгоритм имеет более высокую разрешающую способность и устойчивость (за счет выбора параметров N, α) по сравнению с алгоритмами, использующими метод проектирования на выпуклые множества [4]. Уровень артефактов, вызванных малым числом углов регистрации, существенно ниже, чем в сверточных алгоритмах [2]. Используя подход работы [12], предложенный алгоритм можно обобщить для восстановления изображения при наличии априорной информации о $\varphi(x, y)$ (например, неотрицательность, ограниченность изображения $\varphi(x, y)$).

СПИСОК ЛИТЕРАТУРЫ

- 1. Херман Г. Восстановление изображений по проекциям. М.: Мир, 1983.
- 2. Пикалов В. В., Преображенский Н. Г. Реконструктивная томография в газодинамике и физике плазмы. Новосибирск: Наука, 1987.
- 3. Наттерер Ф. Математические аспекты компьютерной томографии. М.: Мир, 1990.
- 4. Rangayyan M. R., Dhawan A. P., Gordon R. Algorithms for limited view computed tomography: an annotated bibliography // Appl. Opt. 1985. 24, N 23. P. 4000.
- 5. Davison M. E. The ill-conditioned nature of the limited angle tomography problem // SIAM Journ. Appl. Math. 1983. 43, N 2. P. 428.
- 6. Davison M. E. Tomographic reconstruction with arbitrary directions // Commun. Pure and Appl. Math. 1981. 34, N 1. P. 77.
- 7. Тихонов А. Н., Арсенин В. Я. Методы решения некорректных задач. М.: Наука, 1983.
- Воскобойников Ю. Е. Обусловленность и информативность задачи восстановления изображений по неполному набору проекций // Тез. докл. Всесоюз. сем. «Оптическая тетнография». Таллинн: Ин-т кибернетики, 1988.
- 9. Воскобойников Ю. Е. Выбор размерности функциональных приближений экспериментальных данных // Автометрия. 1985. № 4.
- 10: Воскобойников Ю. Е., Преображенский Н. Г., Седельников А. И. Математическая обработка эксперимента в молекулярной газодинамике. Новосибирск: Наука, 1984.
- 11. Golub G. H., Heath M., Wahba G. Generalized cross-validation as a method for choosing a good ridge parameter // Technometrics. 1979. 21, N 2. P. 215.
- Воскобойников Ю. Е. Эффективный алгоритм решения плохо обусловленных систем уравнений при интерпретации экспериментальных данных // Автометрия. 1988. № 5.

Поступила в редакцию 21 декабря 1994 г.