РОССИЙСКАЯ АКАДЕМИЯ НАУК СИБИРСКОЕ ОТДЕЛЕНИЕ

АВТОМЕТРИЯ

N<u>⁰</u> 2

1994

УДК 621.371:534.8:535.42

И. Н. Кушнарев, С. Н. Шарангович

(Томск)

ДИФРАКЦИЯ СВЕТОВЫХ ПУЧКОВ НА УЛЬТРАЗВУКЕ В ОПТИЧЕСКИ НЕОДНОРОДНЫХ ИЗОТРОПНЫХ СРЕДАХ И КУБИЧЕСКИХ КРИСТАЛЛАХ

Разработана теоретическая модель сильного брэгговского акустооптического взаимодействия световых пучков в изотропных средах и кубических кристаллах в условиях температурно-наведенных оптических неоднородностей. Получены аналитические решения уравнений связанных волн для линейно-неоднородного распределения температурного поля. Определены поляризационные параметры световых пучков в дифракционных порядках. Показано, что термонеоднородности среды при больших эффективностях дифракции приводят к неоднородности поляризационных параметров — азимута и эллиптичности по апертурам световых пучков.

Введение. Акустооптические (АО) методы управления энергетическими и поляризационными параметрами светового излучения, основанные на явлении дифракции света на ультразвуке в оптически однородных, изотропных средах и в кубических кристаллах, достаточно подробно изучены для моделей как сильного, так и слабого АО-взаимодействия (АОВ) однородных и неоднородных полей [1—4]. Однако данные модели мало пригодны для описания поляризационных явлений в изотропных средах с температурно-наведенными оптическими неоднородностями, которые характерны для АО-устройств, работающих при больших эффективностях дифракции [5—7]. В существующих методах расчета АОВ, использующих модели линейно-неоднородных сред, рассмотрение проводилось в предположении небольших эффективностей дифракции [5—9], ограничено численным интегрированием [10] и не учитывало поляризационных эффектов.

Настоящая работа посвящена разработке более общей модели брэгтовской дифракции ограниченных световых пучков на слаборасходящихся ультразвуковых волнах в температурно-возмущенных, линейно-неоднородных, оптически изотропных средах и кубических кристаллах, позволяющей описывать изменение амплитудно-фазовой и поляризационной структуры дифракционного поля при сильном АОВ и произвольной ориентации градиента температурного поля.

Общие соотношения. Рассмотрим брэгтовское акустооптическое взаимодействие световых пучков E_0 , E_1 в поле монохроматического звукового пучка $U(\mathbf{r}, t)$, распространяющегося в направлении волновой нормали q в прозрачном, кубическом кристалле, в котором создано, например, из-за тепловыделения в пьезопреобразователе регулярное, пространственно-неоднородное температурное поле $T(\mathbf{r})$.

Геометрия АОВ показана на рис. 1. Область АОВ ограничена параллельными плоскостями $\Gamma \cdot \mathbf{r} = 0$ и $\Gamma \cdot \mathbf{r} = L$, совпадающими с границами слаборасходящегося пучка U(r) с лучевой нормалью $\mathbf{q}_{\mathbf{r}}$, которая в общем случае может быть наклонена к нормали **q** на угол γ , причем $\Gamma \cdot \mathbf{q}_{\mathbf{r}} = 0$.

Рис. 1. Геометрия дифракции и координатные системы

Распределение температурного поля Т(г) в области АОВ в первом приближении аппроксимируем линейной функцией

$$T(\mathbf{r}) = T(\mathbf{r} = 0) + \mathbf{r} \cdot \operatorname{grad} T(\mathbf{r}) \Big|_{\mathbf{r} = 0}, \quad (1)$$

где $\mathbf{r} = l\Gamma + z\mathbf{q}_g$ — радиус-вектор; $T(\mathbf{r} = 0) = T_0$ — средняя температура кристалла.

Возмущения диэлектрической прони-

цаемости среды є под действием полей

U(r, t) и T(r) соответственно на величины $\Delta \hat{\epsilon}_a$ и $\Delta \hat{\epsilon}_i$ будем считать малыми по сравнению с го и представим в линейном приближении

$$\widehat{\epsilon}(\mathbf{r}, t) = \widehat{\epsilon}_0 + \Delta \widehat{\epsilon}_s(\mathbf{r}, t) + \Delta \widehat{\epsilon}_t(\mathbf{r}).$$
(2)

Здесь $\hat{c_0} = n^2 \hat{I}, n$ — показатель преломления при температуре T_0, \hat{I} — единичный тензор второго ранга,

$$\widehat{\Delta e_a}(\mathbf{r}, t) = 1/2 \left[\widehat{\Delta e} U_m(\mathbf{r}) \exp[i(\Omega_0 t - \mathbf{K}_0 \cdot \mathbf{r})] + \kappa.c. \right], \tag{3}$$

где K₀ = $q\Omega_0/v$; Ω_0 , $v_\lambda U_m(r)$ — центральная частота, скорость и распределение амплитуды U(r, t); $\Delta \epsilon$ — величина возмущения ϵ_0 в поле U единичной амплитуды при температуре T_0 [1].

$$\Delta \hat{\varepsilon}_{r}(\mathbf{r}) = 2n \frac{dn}{dT} \Big|_{T = T_{0}} \Delta T(\mathbf{r}) \hat{I}$$
⁽⁴⁾

 $-\Delta T(\mathbf{r}) = \mathbf{r} \cdot \operatorname{grad} T(\mathbf{r}) \Big|_{\mathbf{r}=0}$ — пространственное распределение температур-

ного поля в области АОВ.

Падающий на область АОВ световой пучок $E^{0}(\mathbf{r}, t)$ с произвольной поляризацией представим в виде квазиплоской волны:

$$\mathbf{E}^{0}(\mathbf{r}, t) = 1/2 \{ \mathbf{e}_{0} E^{0}(\mathbf{r}) \exp[i(\omega_{0}t - \mathbf{k}_{0} \cdot \mathbf{r})] + \kappa.c. \},$$
(5)

где ω_0 , e_0 , $E^0(r)$ — частота, комплексный вектор поляризации и распределение амплитуды на плоскости $\Gamma \cdot \mathbf{r} = 0$ по координате $z = \Gamma \cdot \mathbf{r}$.

Световое поле в области АОВ, являющейся в отношении оптических свойств пространственно неоднородной, представим в виде суммы локальноплоских неоднородных пучков нулевого Ео и первого Е1 дифракционных поряд-KOB:

$$E(\mathbf{r}, t) = 1/2 \left\{ \sum_{j=0}^{1} \sum_{k=1}^{2} e_{k}^{j} E_{j}^{k}(\mathbf{r}) \exp[i(\omega_{j}t - \int \mathbf{k}_{j}(\mathbf{r})d\mathbf{r})] + \text{ x.c.} \right\},$$
(6)

где пространственная зависимость волновых векторов k_i(r) обусловлена неоднородностью оптических свойств среды; каждый пучок представлен разложением на две линейно-поляризованные составляющие с амплитудами Е^k в соответствующих ортонормированных базисах (e'_1, e'_2, N_j), образованных волновыми нормалями N_j и единичными, взаимно ортогональными векторами e'1, e'2, которые произвольно ориентированы в плоскостях поляризации $N_j \cdot \mathbf{r} = \text{const пучков } \mathbf{E}_j.$

Для упрощения дальнейших вычислений ориентацию базисных векторов e'_1 , e'_2 естественно связать с поляризацией собственных ортогонально поляризованных типов дифракции, определяемой анизотропией оптических свойств среды AOB, наведенной акустическим пучком, т. е. анизотропией тензора $\Delta \hat{\epsilon}_a$. Формально процедура определения направлений e'_1 , e'_2 в данном случае сводится к отысканию собственных векторов планальных тензоров (i, j = 0,1) [3, 4]:

$$\Delta \hat{\varepsilon}_{j} = (\hat{I} - N_{j}N_{j})\Delta \hat{\varepsilon}_{a}(\hat{I} - N_{i}N_{i})\Delta \hat{\varepsilon}_{a}(\hat{I} - N_{j}N_{j}) \quad (j \neq i),$$
(7)

т. е. к решению уравнений $\Delta \hat{e_j} e_k^j = \bar{\lambda}_k e_k^j$. При такой ориентации векторов e_1^i , e_2^j , как показано в [3, 4], АОВ компонент $\mathbf{E}_j \cdot e_1^j$ и $\mathbf{E}_j \cdot e_2^j$ световых пучков происходит независимо друг от друга и характеризуется экстремальными значениями АО-связи, связанными с собственными числами $\lambda_k = e_k^j \Delta \hat{e_j} e_k^j$.

Эволюция комплексных амплитуд данных компонент $E_j^k(\mathbf{r})$ описывается в рамках геометрооптического приближения двумерной брэгтовской дифракции следующими двумя независимыми системами дифференциальных уравнений (k = 1; 2):

$$\nu_{0} \frac{\partial}{\partial l} E_{0}^{k}(l, z) + \eta_{0} \frac{\partial}{\partial z} E_{0}^{k}(l, z) = -iC_{k}U_{m}^{*}(l, z)E_{1}^{k}(l, z)\exp[i\int\Delta\mathbf{K}(\mathbf{r})d\mathbf{r}],$$

$$\nu_{1} \frac{\partial}{\partial l}E_{1}^{k}(l, z) + \eta_{1} \frac{\partial}{\partial z}E_{1}^{k}(l, z) = -iC_{k}U_{m}(l, z)E_{0}^{k}(l, z)\exp[-i\int\Delta\mathbf{K}(\mathbf{r})d\mathbf{r}],$$
(8)

где $l, z \rightarrow координаты вдоль составляющих <math>\mathbf{r} = l\Gamma + z\mathbf{g}_q$ в плоскости дифракции;

$$\Delta \mathbf{K}(\mathbf{r}) = \mathbf{k}_0(\mathbf{r}) - \mathbf{k}_1(\mathbf{r}) + \mathbf{K}_0 = \Delta \mathbf{K}(l, z) \Gamma$$
(9)

— локальный вектор фазовой расстройки; $C_k = k_0(e_k^1 \Delta \hat{e}_a e_k^0)/4n = k_0 \lambda_k/4n$ — коэффициенты, характеризующие минимальное (k = 1) и максимальное (k = 2) значения АО-связи, где параметры $\lambda_k = (e_k^1 \Delta \hat{e}_a e_k^0)$ связаны с собственными числами тензоров $\Delta \hat{e}_j$ (7): $|\lambda_k| = \overline{\lambda}_k^{0.5} = [e_k^j \Delta \hat{e}_j e_k^j]^{0.5}$; k_0 — волновое число света в вакууме; $v_j = \cos \varphi_j$, $\eta_j = \pm \sin \varphi_j$, $\varphi_j = \Theta_0 \pm \gamma$ — углы между нормалями N_j и Γ , где знак +(-) в геометрии дифракции рис. 1 соответствует j = 1 (0); Θ_0 — угол падения.

Полученную систему уравнений (8) необходимо дополнить граничными условиями для взаимодействующих световых полей:

$$E_0^k(l=0, z) = E_k(z), \quad E_1^k(l=0, z) = 0,$$
 (10)

где $E_k(z) = (\mathbf{e}_0 \cdot \mathbf{e}_k^0) E^0(z)$ — составляющие пучка \mathbf{E}^0 вдоль \mathbf{e}_k^0 (k = 1; 2). Решения E_j^1 и E_j^2 системы (8), являющиеся проекциями комплексных векторных амплитуд E_j на оси \mathbf{e}_j^1 и \mathbf{e}_2^j , полностью определяют изменения в состоянии поляризации пучков E_j при АОВ [3].

Аналитические решения. Для определения влияния оптической неоднородности (4) на амплитудно-фазовые и поляризационные распределения пучков E_j в условиях сильного АОВ допустим, что пучок U имеет однородное распределение $U(l, z) = U_0$ при 0 < l < L, где U_0 — амплитуда. Тогда согласно (8) характер энергообмена между составляющими E_j^k пучков E_j определяется значениями C_k и пространственной зависимостью $\Delta K(l, z)$ в области АОВ.

Для установления вида функции $\Delta K(l, z)$ в линейно-неоднородной среде (4) воспользуемся ввиду малости $\Delta \hat{\epsilon}_{r} \ll \hat{\epsilon}_{0}$ разложением входящих в (9) векторных функций $k_{j}(\mathbf{r}) = k_{0}n(\mathbf{r})N_{j}(\mathbf{r})$ в ряд Тейлора [12]:

 $\mathbf{k}_{j}(\mathbf{r}) = \mathbf{k}_{j}^{*} + \frac{d\mathbf{k}_{j}}{d\mathbf{r}}\Big|_{\mathbf{r}=0} \cdot \mathbf{r} = \mathbf{k}_{j}^{*} + \mathbf{k}_{0}\mathbf{N}_{j}^{*}\Big[\frac{d\mathbf{n}}{d\mathbf{r}}\Big|_{\mathbf{r}=0} \cdot \mathbf{r}\Big] + \mathbf{k}_{0}\mathbf{n}^{*}\Big[\frac{d\mathbf{N}_{j}}{d\mathbf{r}}\Big|_{\mathbf{r}=0} \cdot \mathbf{r}\Big],$

где индексом * помечены величины, взятые при r = 0; второй член характеризует изменение волнового вектора по модулю, а третий — по направлению, причем

$$\frac{dn}{d\mathbf{r}}\mathbf{r} = \frac{dn}{dT}\operatorname{grad} T \cdot \mathbf{r}, \qquad \frac{d\mathbf{N}_j}{d\mathbf{r}} \cdot \mathbf{r} = \frac{dn}{dT}\frac{|\mathbf{N}_j^* \times \operatorname{grad} T|}{n^*} \frac{(\Gamma \cdot \mathbf{r})}{(\Gamma \cdot \mathbf{N}_j^*)} \mathbf{m}_j,$$

m_j — единичный вектор, лежащий в плоскости дифракции и ортогональный N_i^{*}. Подставляя данное разложение в (9) и умножая полученное векторное уравнение скалярно на Г, найдем с учетом геометрии дифракции рис. 1 искомую зависимость $\Delta K(l, z)$ в области AOB:

$$\Delta K(l, z) = \Delta K' + sz + tl. \tag{11}$$

Здесь $\Delta K' = (\mathbf{k}_0^* - \mathbf{k}_1^* + \mathbf{K}_0) \cdot \Gamma$ — начальная фазовая расстройка, вызванная отклонением угла падения Θ_0 от угла Брэгта $\Theta_B \simeq \frac{\lambda_0 f_0}{2 v n}$ и частоты ультразвука f or $f_0 = \Omega_0/2\pi$:

$$\Delta K' = \frac{k_0 n \sin 2\Theta_B}{\cos(\Theta_B - \gamma)} \left(\Theta_0 - \Theta_B\right) + \frac{2\pi \sin \Theta_B}{v \cos(\Theta_B - \gamma)} (f - f_0),$$

а коэффициенты

 $s = 2k_0 \delta n \sin \gamma \sin \Theta_0 \sin \varphi_1 | \operatorname{grad} T|$,

 $t = k_0 \delta n \left[2 \sin \gamma \sin \Theta_0 \cos \varphi_t + tg(\Theta_0 - \gamma) \sin(\varphi_t - \Theta_0 + \gamma) - \right]$

$$- \operatorname{tg}(\Theta_0 + \gamma) \operatorname{sin}(\varphi_1 - \Theta_0 - \gamma)]| \operatorname{grad} T|$$

определяют влияние направления, характеризуемого углом φ_i (см. рис. 1), и

величины gradT; $\delta n = \frac{dn}{dT}\Big|_{T=T_0}$. В зависимости от ориентации gradT в области АОВ будем выделять случаи поперечно ($\varphi_i = 90^\circ$)-, смешанно ($0 < \varphi_i < 90^\circ$)- и продольно-неоднородной (φ_t = 0) среды. В общем случае при γ ≠ 0 геометрия АОВ несимметрична (см. рис. 1) и коэффициенты t, s ≠ 0 соответственно характеризуют влияние продольной и поперечной составляющих gradT на АОВ. Если же рассматривается симметричная геометрия АОВ (y = 0), то при $\varphi_t = 0$ имеем s, t = 0. Если же $\varphi_t = 90^\circ$, получим s = 0 и $t = -2k_0 \delta n \sin\theta_0 | \operatorname{grad} T|$, т. е. для данного случая вариация параметра t в полученных ниже решениях будет описывать AOB в поперечно-неоднородной среде.

Далее, подставляя (9), (11) в (8) и выполнив интегрирование

$$\int \Delta \mathbf{K}(\mathbf{r}) d\mathbf{r} = \int \Delta K(l, z) \Gamma(\Gamma dl + \mathbf{q}_{z} dz) = \int \Delta K(l, z) dl = \Delta K' l + s l z + t l^{2}/2,$$

сделаем в системе (8) замену переменных

$$E_i^k(l, z) = B_i(l, z) \exp[-i\Delta K'(z - \eta_i l/\nu_i)/(\eta_0/\nu_0 - \eta_1/\nu_1)]$$
(12)

и перейдем в апертурную координатную систему (ζ_0, ζ_1)

$$\zeta_0 = -\eta_0 l + \nu_0 z, \quad \zeta_1 = \eta_1 l - \nu_1 z, \tag{13}$$

координаты 5, которой отсчитываются вдоль осей, перпендикулярных нормалям N_i пучков E_i, и показаны на рис. 1. В результате система (8) приводится к

каноническому виду, допускающему в рассматриваемом случае аналитическое решение:

$$i \frac{\partial B_{1}(\zeta_{0},\zeta_{1})}{\partial \zeta_{0}} = \sigma U(\zeta_{0},\zeta_{1})B_{0}(\zeta_{0},\zeta_{1}),$$

$$i \frac{\partial B_{0}(\zeta_{0},\zeta_{1})}{\partial \zeta_{1}} = \sigma U^{*}(\zeta_{0},\zeta_{1})B_{1}(\zeta_{0},\zeta_{1}).$$
(14)

Здесь

$$\sigma = U_0 C_k / (\nu_0 \eta_1 - \nu_1 \eta_0),$$

$$U(\zeta_0, \zeta_1) = \exp[-j\{s(\zeta_0\eta_1 + \zeta_1\eta_0)(\zeta_0\nu_1 + \zeta_1\nu_0) + \frac{t}{2}(\zeta_0\nu_1 + \zeta_1\nu_0)^2\}(\nu_0\eta_1 - \nu_1\eta_0)^{-2}].$$

Соответственно граничные условия (10) для системы (14) с учетом (12), (13) задаются теперь на кривой $C\left(\zeta_0 = -\frac{\nu_0}{\nu_1}\zeta_1\right)$ в виде

$$B_1\Big|_{c} = 0, \qquad \frac{\partial B_1}{\partial \zeta_0}\Big|_{c} = -i\sigma E_k \Big(\frac{\zeta_0}{\nu_0}\Big) \exp\left[i\frac{\Delta K'\zeta_0/\nu_0}{\eta_0/\nu_0 - \eta_1/\nu_1}\right] \tag{15a}$$

И

$$B_0\Big|_{c} = E_k\Big(\frac{\xi_0}{\nu_0}\Big)\exp\left[i\frac{\Delta K'\xi_0/\nu_0}{\eta_0/\nu_0-\eta_1/\nu_1}\right], \quad \frac{\partial B_0}{\partial \xi_1}\Big|_{c} = 0.$$
(156)

Решения системы (14) найдем, воспользовавшись методом Римана [14]. В результате с учетом (12), (13) амплитудно-фазовые распределения E_j^k на выходной границе области АОВ ($\Gamma \cdot \mathbf{r} = l = L$), задаваемой уравнением $\xi = 2\delta - \frac{\nu_0}{\nu_1}\eta$, где (ξ, η) — координаты точки *P*, через которую проходят характеристики уравнений (14) $\zeta_1 = \eta$, $\zeta_0 = \xi$ (см. рис. 1), определяются следующими формулами в первом дифракционном порядке (k = 1, 2):

$$E_{1}^{k}(\eta) = -i \frac{C_{k}U_{0}l}{2\nu_{1}} \int_{-1}^{+1} E_{k} \left\{ \frac{\delta(1-y)}{\nu_{0}} - \frac{\eta}{\nu_{1}} \right\} \exp\left[\delta m(1-y) + \delta^{2} n(1-y)^{2}\right] \times \\ \times \Phi\left(\frac{d}{a}, 1; \ a\delta^{2} \frac{\nu_{1}}{\nu_{0}}(1-y^{2})\right) dy,$$
(16)

где

$$\delta = \left[\frac{\nu_0\eta_1 - \nu_1\eta_0}{\nu_1}\right]\frac{l}{2}; \quad m = \eta\left(-a + \frac{\nu_1}{\nu_0}b\right) - i\frac{\Delta K'l}{2\delta}; \quad n = \frac{\nu_1}{\nu_0}\left(a - \frac{\nu_1b}{\nu_02}\right);$$
$$a = -i\frac{s(\eta_1\nu_0 + \eta_0\nu_1) + t\nu_1\nu_0}{\left(\nu_0\eta_1 - \nu_1\eta_0\right)^2}; \quad b = -i\frac{2s\eta_0\nu_0 + t\nu_0^2}{\left(\nu_0\eta_1 - \nu_1\eta_0\right)^2}; \quad d = -\sigma^2,$$

и в нулевом дифракционном порядке (k = 1, 2):

$$E_0^k(\xi) = E_k(\xi) - \frac{C_k^2 U_0^2 l^2}{4\nu_1 \nu_0} \int_{-1}^{+1} (1+y) E_k \left\{ \frac{\xi - \delta(1-y)}{\nu_0} \right\} \times \\ \times \exp[\delta m (1-y) + \delta^2 n (1-y)^2] \Phi\left(\frac{d}{b'} + 1, 2; \ b \, \delta^2 \frac{\nu_1}{\nu_0} (1-y^2) \right) dy, \quad (17)$$

где

$$m = \xi \left(\frac{a'}{2} - \frac{\nu_1}{\nu_0} b' \right) + \frac{i\Delta K' l}{2\delta}; \qquad n = b' \frac{\nu_1}{\nu_0} - \frac{a'}{2}; \qquad a' = i \frac{2s\eta_1\nu_1 + b'_1^2}{(\nu_0\eta_1 - \nu_1\eta_0)^2};$$
$$b' = i \frac{s(\eta_1\nu_0 + \eta_0\nu_1) + t\nu_1\nu_0}{(\nu_0\eta_1 - \nu_1\eta_0)^2};$$

Ф(a, c; z) — вырожденная гипергеометрическая функция первого рода [13]. С помощью полученных решений (16), (17) найдем пространственные распределения интенсивности в дифракционных порядках

$$I_{j}(\xi,\eta) = |E_{j}^{1}(\xi,\eta)|^{2} + |E_{j}^{2}(\xi,\eta)|^{2}, \qquad (18)$$

а также поляризационных параметров — азимута κ_i и эллиптичности p_j по формулам (П4).

Выражения (16)—(18), (П4) описывают изменения в пространственных распределениях интенсивностей, амплитуд, фаз и поляризаций пучков Е, в условиях сильного АОВ и применимы для произвольных значений АО-связи, величины и ориентации grad T в области АОВ, а также входных распределений $E^{0}(\mathbf{r})$. При отсутствии термонеодногодности среды (gradT=0) и фазовом синхронизме ($\Delta K' = 0$) (16), (17) переходят в выражения для двумерной брэгговской дифракции [11, 2].

Из общего вида полученных решений (16), (17) и (П4) следует, что в общем случае, когда $\lambda_1 \neq \lambda_2$ и grad $T \neq 0$, оптическая неоднородность среды при сильном АОВ будет приводить к неоднородности пространственных распределений поляризационных параметров κ_j , p_j по апертурам пучков E_j . Это обусловлено различной степенью изменения амплитудно-фазовых распределений $E_j^1(\zeta_j), E_j^2(\zeta_j)$ при вариации амплитуды и частоты звука, угла падения света в условиях температурных градиентов, т. е. U_0 , $\Delta K'$ и grad T.

Результаты численного моделирования. Более детальное исследование динамики изменения поляризаций пучков Е, при сильном АОВ проведем, основываясь на результатах численных расчетов в обобщенных параметрах g^{*}, b^{*}, s^{*}, t^{*}, ΔK^* по формулам (П2), (П3), полученных из (16), (17), причем $b^* = b_1^* = b_2^* \lambda_1 / \lambda_2$. В расчетах полагалось, что пучок \mathbf{E}^0 , расходимость которого меньше расходимости звукового пучка ($g^* = 0,5$), имеет гауссово распределение ($\prod 1$) ($E^0 = 1$), линейную поляризацию с азимутом φ и падает в плоскости (110) на продольную ультразвуковую волну, распространяющуюся в кристалле Ge в направлении [110], при этом $\lambda_2/\lambda_1 = 0.32$. Углы $\Delta \kappa_i = \kappa_i - \varphi$ на рис. 2—4 характеризуют поворот, а знак p_j — направление вращения эллипсов поляризации пучков Е.

На рис. 2 представлены распределения $I_1(Y)$, $\Delta \kappa_1(Y)$, $p_1(Y)$ по сечению дифрагированного в 1-й порядок светового пучка в условиях продольной термонеоднородности (s*≈ 0, t*≠ 0) и сильной АО-связи. Термонеоднородность среды начинает сказываться при $t^* \ge 1,5$. Как видно из рис. 2, *a*, с ростом t^* наблюдается снижение эффективности дифракции и смещение центра распределения $I_1(Y)$. При этом величина смещения очень слабо зависит от степени АО-связи b^* и изменения в гауссовой структуре $I_1(Y)$ незначительны. Более существенны изменения в поляризационной структуре пучка E₁. Как видно из рис. 2, b, c, термонеоднородность среды в условиях сильной АО-связи приводит к эллиптической поляризации и неоднородности распределений $\Delta \kappa_1(Y)$, $p_1(Y)$. В области значений $b^* < 1,5$ в пределах апертуры пучка E_1 максимальное изменение Δc_1 и p_1 не превышает соответственно 1,5° и 0,05. С возрастанием АО-связи 1,5 < b^{*}< 3,5 для величин t^{*}≈ 1,5 наблюдается увеличение поворота азимута $\Delta \kappa_1$, эллиптичности p_1 и степени их пространственной неоднород-

6 Автометрия № 2, 1994 г.

Рис. 2. Распределения интенсивности $I_1(a)$, изменения азимута $\Delta \kappa_1(b)$ и эллиптичности $p_1(c)$ по апертурной координате Y в 1-м дифракционном порядке при различных параметрах продольной термонеоднородности t^* (стлошные кривые — 1,5; штриховые — 3) к АО-связи b^* (кривые I - 1,5; 2 - 3,5; 3 - 5) для $\varphi = 45^\circ$, $s^* \simeq 0$

Рис. 3. Распределения интенсивности $I_0(a)$, изменения азимута $\Delta \kappa_0(b)$ и эллиптичности $p_0(c)$ по апертурной координате X в 0-м дифракционном порядке при различных параметрах продольной термонеоднородности t^* (сплошные кривые — 1,5; штриховые — 3) и АО-связи b^* (кривые I = 1,5; 2 = 3,5; 3 = 5) для $\varphi = 45^\circ$, $s^* \simeq 0$

ности. При этом распределение $\Delta \kappa_1(Y)$ симметрично относительно оси пучка E_1 , а $p_1(Y)$ асимметрично. Дальнейшее увеличение АО-связи $3,5 < b^* < 5$ приводит к уменьшению поворота азимута $\Delta \kappa_1$, эллиптичности p_1 и их изменению по апертуре. Возрастание термонеоднородности (рис. 2, b, c — штриховые кривые) в большей степени влияет на распределение поворота азимута $\Delta \kappa_1(Y)$, приводя к его асимметрии, и в меньшей — на эллиптичность $p_1(Y)$. Как следует из расчета и рис. 2, максимальные значения пространственной неоднородности распределений поляризационных параметров $\Delta \kappa_1(Y)$, $p_1(Y)$ при изменении АО-связи b^* и параметра термонеоднородности t^* в пределах $1 < b^* <$ $< 5, <math>1 < t^* < 3$ составляют соответственно $10 + 25^\circ$, 0, 1 + 0, 4.

Влияние продольной термонеоднородности на параметры свстового пучка в 0-м дифракционном порядке показано на рис. 3. Из рис. 3, *а* видно, что с ростом t^* наблюдается уменьшение смещения центра распределения $I_0(X)$, происходящее при повышении АО-связи b^* , а также скорости перекачки энергии из 0-го в 1-й порядок. Абсолютное значение эллиптичности $|p_0|$ при небольших термонеоднородностях $t^* \le 1,5$ с ростом величины АО-связи b^* сначала возрастает до 0,4 (кривые 1, 2, рис. 3), а затем падает (кривая 3). Максимальная неоднородность $p_0(X)$ по апертуре пучка E_0 достигается при $b^*= 1,5$ и равна = 0,25. При значительной термонеоднородности ($t^* \ge 3$), как

видно из рис. 3, b, изменение $p_0(X)$ по сечению пучка E_0 выражено менее сильно ($\Delta p_0 \leq 0,1$). С ростом АО-связи $2 < b^* < 5$ эллиптичность максимальна и близка к $p_0 = 0,4$ для центральной части пучка E_0 и уменьшается для периферийных частей (кривые 2, 3, рис. 3). Пространственные распределения поворота азимута $\Delta \kappa_0(X)$, представленные на рис. 3, b, в сравнении с соответствующими распределениями $\Delta \kappa_1(Y)$ обладают существенно большей неоднородностью, достигающей 60 + 80° в пределах апертуры пучка E_0 при $t^* > 1,5$ и $b^* > 1,5$ (кривые 2, рис. 3).

Отметим, что приведенные зависимости и их анализ можно распространить на АОВ в поперечно-неоднородной среде ($\varphi_c = 90^\circ$) в условиях симметричной геометрии дифракции ($\gamma = 0^\circ$), так как s = 0, а $t = -2k_0\delta n \times \sin\Theta_0$ |gradT|. Оценка для кристалла Ge при $\lambda = 10.6$ мкм, L = 20 мм, $\Theta_0 = 3^\circ$, $dn/dT = 4 \cdot 10^{-4} \frac{1}{C^\circ}$ показывает, что в данном случае области изме-

нения параметра $t^* = 1 + 3$ соответствуют значения поперечного температурного градиента dT/dz = 0,2 + 2 град/мм, характерные на практике для эффективных АО-ячеек среднего ИК-диапазона.

Для общего случая AOB в поперечно-неоднородной среде, когда $\gamma \neq 0$, s*>1 и t*<1, результаты расчета представлены на рис. 4, 5. Из рис. 4 видно, что поперечная термонеоднородность среды приводит к ограничению апертуры 2Y_{0.5} дифрагированного пучка E_1 , отсчитываемой по уровню 3 дБ, и снижению эффективности дифракционного процесса, что обусловлено локализацией области эффективного энергообмена по поперечной координате z (см. рис. 1). Расчет показывает, что уменьшение апертуры с ростом s* для b*= 1,5 можно аппроксимировать линейной зависимостью $2Y_{0,5} = 0,885$ — 0,0575s*, причем с повышением AO-связи в области 1,5 < b*< 5 скорость изменения $d(2Y_{0,5})/ds^*$ увеличивается на 8%. Снижение интенсивности I_1 в центре

пучка E_1 при $2 < s^* < 10$ составляет

≈ 16 % для b*= 1,6 и ≈ 8 % для $b^* = 5,1,$ т. е. уменьшается с ростом А()связи. Соответствующие распределения поляризационных параметров $p_1(Y)$, $\Delta c_1(Y)$ представлены на рис. 4, b, c. Отметим основные закономерности в изменении состояния поляризации пучка Е1 в условиях сильного АОВ и поперечной термонеоднородности: поляризация становится эллиптической; распределения $p_1(Y), \Delta \kappa_1(Y)$ неоднородны по сечению пучка Е1 и в отличие от подобных зависимостей на рис. 2, b, c сохраняют симметричную структуру при изменении АО-связи b* и параметра термонеоднородности s^{*}; наибольшие изменения $\Delta \kappa_1, p_1$ наблюдаются для периферийных

областей пучка E_1 , а поляризация приосевой части $E_1(Y)$ остается практически линейной. С ростом параметра s^* на оси пучка \mathcal{L}_1 поворот азимута $\Delta \kappa_1$ уменьшается, а в периферийных участках возрастает (кривые 1-3, рис. 4, a, b). Неоднородность распределения $\Delta \kappa_1(Y)$ увеличивается при повышении АОсвязи и для $s^* = 2 + 10$ при $b^* = 1,5 + 5$ составляет 10 + 30°. Максимальное изменение эллиптичности p1 наблюдается для тех участков распределения $I_1(Y)$, где $\left|\frac{dI_1(Y)}{dY}\right| \rightarrow \max$ (см. кривые 3, рис. 4, *a*, *c*), возрастает с повышением АО-связи b^* и достигает $\delta p_1 = 0,3$ при $s^* = 10, b^* = 5$.

На рис. 5 приведены зависимости $I_0(X)$. $\Delta \kappa_0(X)$, $p_0(X)$ прошедшего светового пучка E_0 на выходе области АОВ для различных величин АО-связи b^* и параметра поперечной термонеоднородности s^{*} Из рис. 5, a следует, что при $s^* \geq 2$ под влиянием поперечной термонеоднородности распределение $I_0(X)$ существенно трансформируется. Например, при s^{*} 10 (кривая 3) термонеоднородность приводит к образованию двухпичковой структуры распределения Io(X), поляризация пичков является эллиптической, существенно неоднородной и различной (кривые 3, рис. 5, b, c). Это объясняется изменением эффективности АОВ и фазовых соотношений между составляющими E_0^k по поперечной координате за счет пространственной зависимости локальной фазовой расстройки $\Delta K(i, z)$, приводящей к сужению области эффективного АОВ. Изменение азимута поляризации $\Delta \kappa_0$, как следует из рис. 5, b, характеризуется максимальной неоднородностью для координат приосевой части падающего пучка E^0 , составляющей 30 + 90° при $b^* = 1,5 + 5$ и уменьшаю-

щейся с ростом s^* Распределение эллиптичности $p_0(X)$, наоборот, минимально

в данной области координат (X - 0) и достигает максимума $p_0 - 0,2 + 0,4$ вблизи локальных максимумов распределения интенсивности $I_0(X)$ (рис. 5, а, с, кривые 3). С ростом термонеоднородности наблюдается сжатие масштаба зависимости $p_0(X)$ при сохранении общего вида. Это обусловлено увеличением $\frac{d\Delta K}{d\bar{z}} \propto s^*$, что приводит к более быстрым по поперечной координате изменениям в амплитудно-фазовой структуре составляющих $E_0^*(X)$. При увеличении АО-связи эллиптичность возрастает для тех участков $I_0(X)$, где $dI_0(X)/db^* < 0$, и убывает, где $dI_0(X)/db^* > 0$ (см. кривые 2, рис. 5, a, c).

Таким образом, результаты аналитического и численного моделирования показывают, что температурно-

Рис. 5. Распределения интенсивности I₀ (a), изменения азимута $\Delta \kappa_0$ (b) и эллиптичности p_0 (с) по апертурной координате Х в 0-м дифракционном порядке при различных параметрах поперечной термонеоднородности s (кривые I - 2; 2 — 5; 3 — 10) и АО-связи b[•] (сплошные кривые — 1,6; штриховые — 5,1) для $\varphi = 45^{\circ}$, t' = 0,5

76

-1.5

-0.9

-0.3

наведенные оптические неоднородности при больших эффективностях дифракции приводят к существенным искажениям в амплитудной и поляризационной структурах дифракционного светового поля. Предложенная модель может быть использована при разработке и проектировании эффективных АО-модуляторов и дефлекторов с заданными требованиями на искажения амплитудно-фазовых и поляризационных характеристик.

приложение

Допустим, для определенности, что падающий световой пучок Е⁰ является линейно-поляризованным и имеет гауссов амплитудный профиль:

$$E_{k}(\zeta_{0}) = (\mathbf{e}_{0} \cdot \mathbf{e}_{k}^{0}) E^{0} \exp[-(\zeta_{0}/W)^{2}], \qquad (\Pi 1)$$

где E^0 — амплитуда; W — ширина апертуры; $\mathbf{e}_0 = \mathbf{e}_1^0 \cos \varphi + \mathbf{e}_2^0 \sin \varphi; \varphi$ — азимут, отсчитываемый от оси е₁. Тогда, выражая все величины в формулах (16), (17) через обобщенные параметры, характеризующие:

$$b_k^* = U_0 L C_k / \sqrt{\cos\varphi_1 \cos\varphi_0} = \frac{\pi}{\lambda_0} \sqrt{M_{2k} P_a L / 2H} \operatorname{sgn}(\lambda_k)$$

— величину АО-связи, где $M_{2k} = \frac{\lambda_k^2}{n^2 \rho^3 \cos \gamma}$ — экстремальные значения ко-эффициента АО-качества (k = 1, 2) [5, 4]; ρ — плотность кристалла; P_a — акустическая мощность; L, H — длина и ширина акустического пучка;

$$g^* = \frac{\sin(\varphi_1) + \varphi_1}{2c \, \cos\varphi_1} \, \frac{L}{W}$$

— геометрию AOB и отношение расходимостей пучков E^0 и U; $s^* = sWL$ поперечную составляющую grad $T; t^* = [t/2]^{0.5}L$ — продольную составляющую gradT; $\Delta K^* = \Delta K'L$ — начальную фазовую расстройку; $Y = \eta / W \cos \varphi_1$, X = $= \xi/W \cos \varphi_0$ — нормированные апертурные координаты, получим выражения для распределений ортогональных составляющих световых полей в 1-м дифракционном порядке (k = 1, 2):

$$E_{1}^{k}(Y) = -i0,5(\mathbf{e}_{0} \cdot \mathbf{e}_{k}^{0})E^{0}b_{k}^{*}\int_{-1}^{+1} \exp\left[-(g^{*}(1-y)-Y)^{2}\right]\Phi(A, 1; C(1-y^{2})) \times \\ \times \exp\left[i\left(-(1-y)\frac{\Delta K^{*}-Y_{5}^{*}}{2}-(1-y)^{2}\frac{t^{*2}+s^{*}g^{*}}{4}\right)\right]dy \qquad (\Pi 2)$$

и в v-м дифракционном порядке (k = 1, 2):

$$E_0^k(X) = \left\{ \exp\left[-X^2\right] - \frac{b_k^{*2}}{4} \int_{-1}^{+1} \exp\left[-(X - g^*(1 - y))^2\right] \times \\ \times \Phi(-A + 1, 2; -C(1 - y^2))(1 + y) \times \\ \times \exp\left[i\left((1 - y)\frac{\Delta K^* + Xs^*}{2} + (1 - y)^2\frac{t^{*2} - s^*g^*}{4}\right)\right] dy \right\} (\mathbf{e}_0 \cdot \mathbf{e}_k^0) E^0, \quad (\Pi 3)$$

где

$$A = \frac{-i}{2} b_k^{*2} \left[t^{*2} + s^* g^* \frac{\sin(\varphi_1 - \varphi_0)}{\sin(\varphi_1 + \varphi_0)} \right]^{-1}; \qquad C = \frac{-i}{2} \left[t^{*2} + s^* g^* \frac{\sin(\varphi_1 - \varphi_0)}{\sin(\varphi_1 + \varphi_0)} \right];$$

 $\varphi_1 + \varphi_0 = \begin{cases} 2\Theta_0 & \text{при } \gamma \leq \Theta_0; \\ 2\gamma & \text{при } \gamma > \Theta_0; \end{cases}$ $\varphi_1 - \varphi_0 = \begin{cases} \pm 2\gamma & \text{при } \gamma \leq \Theta_0; \\ \pm 2\Theta_0 & \text{при } \gamma > \Theta_0, \end{cases}$

причем знак «+» соответствует отклонению q. от q вправо, а «-» - влево.

Соответствующие распределения азимутов к_j, отсчитываемых от векторов e^j₁, и эллиптичности p_j определим по формулам [15]:

$$tg2\kappa_{j} = \frac{2Re\mu}{1 - |\mu|^{2}}; \qquad p_{j}^{2} = \frac{1 - [1 + 4Im^{2}\mu/(1 - |\mu|^{2})^{2}]^{0.5}}{1 + [1 + 4Im^{2}\mu/(1 - |\mu|^{2})^{2}]^{0.5}}, \tag{II4}$$

где $\mu = E_j^2/E_j^1$; значения E_j^k вычисляются из (16), (17), (П2), (П3).

СПИСОК ЛИТЕРАТУРЫ

- 1. Балакший В. И., Парыгин В. Н., Чирков Л. В. Физические основы акустооптики.--М.: Радио и связь, 1985.
- Белый В. Н., Кулак Г. В. Дифракция световых пучков произвольной поляризации на объемных акустических волнах // Применение АО-методов и устройств в промышленности. -- Л., 1984.
- 3. Задорин А. С., Шарангович С. Н. Поляризационные характеристики акустооптического взаимодействия волновых пучков в оптически изотропных средах // Изв. вузов. Физика. Деп. в ВИНИТИ 21.08.85, № 6219-85.
- Задорин А. С., Шарангович С. Н. Преобразование корреляционных и поляризационных параметров светового излучения при акустооптическом взаимодействии в оптически изотропных средах // Оптика и спектроскопия.—1990.—69.—Вып. 1.
- 5. Eschler Hans. Performance limits of acoustooptic light deflector due to thermal effects // Appl. Phys.--1976.--9, N 2.-P. 289.
- Магдич Л. Н., Молчанов В. Я. Тепловые искажения поля дифрагированного излучения в акустооптических модуляторах // ЖТФ.—1978.—48, № 12.
- Fox A. J. Thermal design for germanium acoustooptic modulators // Appl. Opt.-1987.-26.-P. 872.
- 8. Коваленко Е. С., Романов С. И. Дифракция света на ультразвуковых волнах в оптически неоднородной анизотропной среде // Межвуз. сб. науч. тр. ЛИАП. — Л., 1987. — Вып. 140.
- Симаков А. Н., Тавасиев А. Ф., Калухов В. А., Торгашин А. Н. Исследование тепловых потерь в акустооптических устройствах // Акустооптические устройства. — Л., 1989.
- Белянин Ю. П., Меньшиков В. В. и др. Метод расчета брэгтовской дифракции света на ультразвуке в среде с тепловыми возмущениями показателя преломления. — Харьков, 1987. — Деп. в Укр. НИИЦНТИ 13.01.87, № ГАСНТИ 27419.
- 11. Moharam M. G., Gaylord T. K., Magnisson R. Bragg diffraction of finite beams by thick gratings // JOSA.-1980.-70, N 3.-P. 300.
- Кушнарев И. Н., Шарангович С. Н. Акустоэлектрооптическое взаимодействие в кристаллах с электроиндуцированной неоднородностью // ЖТФ.—1992.—62.—Вып. 1.
- 13. Никифоров А. Ф., Уваров В. Б. Специальные функции математической физики.---М.: Наука, 1984.
- 14. Курант Р. Уравнения с частными производными. -- М.: Мир, 1964.
- 15. Федоров Ф. И. Оптика анизотропных сред. Минск, 1958.

Поступила в редакцию 6 июня 1992 г.