РОССИЙСКАЯ АКАДЕМИЯ НАУК

сибирское отделение

АВТОМЕТРИЯ

Nº 2

1994

ОБРАБОТКА СИГНАЛОВ И ИЗОБРАЖЕНИЙ

УДК 519.67 :-681.327.12:629.78

В. С. Киричук, Н. С. Яковенко

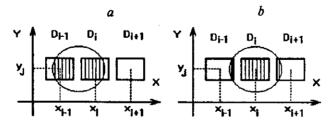
(Новосибирск)

АДАПТИВНЫЕ АЛГОРИТМЫ ПОИСКА МАЛОРАЗМЕРНЫХ ОБЪЕКТОВ НА ИЗОБРАЖЕНИЯХ

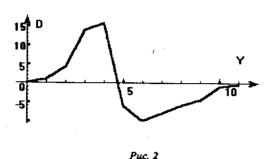
Предложен алгоритм поиска точечных объектов на цифровых изображениях, получаемых сканирующими линейками. Описана методика, базирующаяся на методе максимального правдоподобия и сводящаяся к двухкратной фильтрации изображения одномерными фильтрами: вдоль оси сканирования фильтром с постоянными коэффициентами, а в ортогональном направлении адаптивным фильтром, учитывающим взаимное расположение объекта идатчиков. Приведены результаты применения методики на модельных и реальных данных.

Постановка задачи. Пусть $D(x_i, y_i)$ — изображение, получаемое сканированием анализируемой сцены фотоприемной линейкой. Предполагаем, что линейка ориентирована по оси X и содержит N элементов (x_i , $i = 1, N, \dots$ координаты центров элементов, N — их число), перемещение линейки осуществляется по оси Y и в заданных координатах y_j , j = 1, M, происходит опрос всех датчиков линейки (M — число опросов). Специфика поиска малоразмерных (точечных) объектов на цифровых изображениях обусловлена тем, что форма объекта изменяется в зависимости от расположения объекта относительно датчиков линейки. Под точечным понимается объект, геометрические размеры проекции которого на поверхность сканирующей линейки порядка размеров датчика линейки. В первую очередь изменение формы зависит от смещения центра объекта от центра датчика вдоль оси линейки. Например, при расположении центра объекта в точке $(x_{i-1} + x_i)/2$ (рис. 1, a) датчики с номерами i - 1 и i регистрируют одинаковый сигнал, а при его расположении в точке x_i (рис. 1, b) значительная часть энергии объекта попадает в і-й датчик.

Изменение отклика объекта вдоль направления сканирования существенно слабее зависит от отклонения центра объекта от центра датчика. В силу физических свойств датчиков и при наличии интегральных звеньев в системе «предварительной» обработки в реальных системах происходит «рас-



Puc. I



тягивание» отклика от объекта на 10—20 отсчетов. На рис. 2 приведено типичное изменение «яркости» сигнала вдоль направления сканирования. Этими же свойствами определяется и анизотропность поведения статистических характеристик анализируемых сцен: корреляция значений отсчетов вдоль оси У существенно более значима, чем вдоль оси X.

В первом приближении отклик $D(x_i, y_j)$ системы регистрации на случайную сцену, содержащую точечные объекты, можно представить в виде

$$D(x_i, y_j) = b + \sum_{i=1}^k a_i f\{(x_i - \xi_i), \delta_i, (y_j - \eta_i)\} + h(x_i, y_j),$$
 (1)

где (x_i, y_i) — координаты узлов дискретной решетки, в которых регистрируется изображение; b — среднее значение сигнала; k — число отыскиваемых объектов; $f\{\}$ — дискретная функция, описывающая форму отклика на l-й объект; a_i — амплитуда отклика; ξ_i , η_i — координаты узла ближайшего к центру l-го объекта; δ_i — отклонение по оси X центра объекта от ближайшего узла; $(-\Delta x/2 \le \delta_i < \Delta x/2, \Delta x$ — расстояние между датчиками); $h(x_i, y_i)$ — результат преобразования исходной сцены системой регистрации.

Как показывает опыт работы с реальными сканирующими системами различных типов, допустимыми являются предположения о разделимости описания объекта и корреляционной функции K_n :

$$f\{(x_i - \xi_i), \delta_i, (y_j - \eta_i)\} \approx \varphi(x_i - \xi_i, \delta_i)\psi(y_j - \eta_i), \quad K_h = K_x \otimes K_y, \quad (2)$$

где \otimes — символ прямого кронекеровского произведения; функции $\varphi(x_i - \xi_i, \delta_i)$ описывают изменения яркости отклика по оси X; $\psi(y_i - \eta_i)$ — по оси Y.

При такой математической модели сигнала необходимо по измерениям $D(x_i, y_i)$ проверить гипотезу о наличии объектов на анализируемой сцене, а при ее выполнении определить местоположения и амплитуды объектов.

Критерий. Классический подход к проблеме обнаружения объектов [1] заключается в проверке в каждой точке поля гипотезы H_0 об отсутствии объекта при альтернативе его наличия. При сделанных предположениях описание объекта имеет вид:

$$D_i = bI + a\psi arphi_i(\delta) + h_i,$$
 где $D_i = \begin{cases} D_{i1} \\ \vdots \\ D_{in} \end{cases}, \psi = \begin{cases} \psi_i \\ \vdots \\ \psi_n \end{cases}, arphi_i(\delta) = arphi(x_i - \xi_i, \delta_i), h_i = \begin{cases} h_{i1} \\ \vdots \\ h_{in} \end{cases}, I$ — единичный век

тор; n — число точек по оси Y в описании объекта, находящегося в центре анализируемого фрагмента. В силу предположения (2)

$$M(h_i h_j^T) = \rho_x(1i - j1)K_y, \tag{3}$$

где $\rho_x(|i-j|) = \{K_x\}_{ii}$.

Для шумов, подчиняющихся экспоненциальным распределениям [2], РНМ-критерий строится на оценке амплитуды объекта. Несложно показать, что ММП приводит к оценкам:

$$\widehat{a}_i = a\varphi_i(\delta) = (\mathring{\psi}^T K_y^{-1} \mathring{\psi})^{-1} \mathring{\psi}^T K_y^{-1} D_i, \tag{4}$$

где $\mathring{\psi} = \psi - \overline{\psi}I$.

Оценки a_i , $i = \overline{1, m}$ (m — число точек в описании объекта по оси X), в матричном виде принимают вид:

$$\widehat{A} = \varphi(\delta)a + \xi, \qquad M(\xi\xi^{-1}) = (\check{\psi}^T K_{\chi}^{-1} \check{\psi})^{-1} K_{\chi}, \tag{5}$$

где $\{\widehat{A}\}_i = \widehat{a_i}, \{\varphi(\delta)\}_i = \varphi_i(\delta), \{\xi\}_i = \xi_i = (\mathring{\psi}^T \overline{K}_{j}^{-1} \mathring{\psi})^{-1} \mathring{\psi}^T \overline{K}_{j}^{-1} D_i$, и оценка амплитуды объекта определяется соотношением

$$\widehat{a} = (\varphi^T(\widehat{\sigma})K_x^{-1}\varphi(\delta))^{-1}\varphi^T(\delta)K_x^{-1}\widehat{A},$$

где δ находится из нелинейного уравнения:

$$\left\{\widehat{A}^{T}K_{x}^{-1}\varphi'(\delta)\right\}\left\{\varphi^{T}(\delta)K_{x}^{-1}\varphi(\delta)\right\} = \left\{\varphi^{T}(\delta)K_{x}^{-1}\widehat{A}\right\}\left\{\varphi^{T}(\delta)K_{x}^{-1}\varphi'(\delta)\right\}. \tag{6}$$

Нормированная оценка

$$W = \hat{a}/\sqrt{(\varphi^T K_x^{-1} \varphi)(\mathring{\psi}^T K_y^{-1} \mathring{\psi}^T)} \in N(0, \sigma^2)$$

является статистикой, которая подлежит сравнению с выбранным пороговым

Алгоритм. Таким образом, предлагаемая методика заключается в фильтрации изображения по оси У одномерным фильтром с постоянными ко- $\mathbf{\phi}$ ф ициентами $\psi_i^* = \left\{ K_y^{-1} \mathring{\psi} \right\}_i / \sqrt{\mathring{\psi}^T K_y^{-1} \mathring{\psi}^T}$, а затем для полученного поля юткликов D^* осуществляется фильтрация адаптивным фильтром $\varphi_i^* =$ $=\left\{K_x^{-1}arphi(\delta)
ight\}_{i}/\sqrt{arphi^T(\delta)K_x^{-1}arphi^T(\delta)}$, при этом параметр δ (смещение относительно дентра) находится из решения нелинейного уравнения (6). В общем случае жспользование такого подхода, особенно в системах реального времени, вряд ли оправдано из-за большого объема вычислений. Для этих ситуаций в [3] описан подход, основанный на разложении возможных описаний объекта в ряд по собственным функциям и сводящийся к процедурам многоканальной линейной фильтрации. Однако для поиска точечных объектов, когда ширина отклика составляет 2—3 линейных размера датчика, вычислительная процедура резко упрощается. Как следует из соотношений (5) и (6), решение **не**линейного уравнения инвариантно относительно изменения масштаба d_i^* и смещения на константу, т. е. если $\hat{\delta}$ есть решение для набора $\left\{d_{-1i}^*, d_{0j}^*, d_{1j}^*\right\}$ (центр объекта находится во 2-м датчике), то то же самое значение $\hat{\delta}$ является решением и для $\left\{1, 0, \gamma_i\right\}$, где $\gamma_i = (d_{1j}^* - d_{0j}^*)/(d_{-1j}^* - d_{0j}^*)$, за исключением вырожденных случаев $a_{-1j}^* - d_{0j}^* = 0$, которые достаточно просто рассмотреть отдельно. Следовательно, решение уравнения (6) зависит только от величины γ_{j} и при задании таблично с требуемой точностью зависимости δ от γ снимается веобходимость решения уравнения (6)

Экспериментальные результаты. Программная реализация предложенного алгоритма осуществлялась для задачи поиска точечных объектов на изображениях в ИК-диапазоне. Максимальный по ширине отклик на объект составлял три линейных размера датчика. Зависимость формы объекта от смещения в достаточно хорошо аппроксимировалась выражениями:

$$\varphi_{-1}(\delta) = (0, 5 - \delta)^2/2, \qquad \varphi_0(\delta) = 0.75 - \delta^2, \qquad \varphi_1(\delta) = (0, 5 - \delta)^2/2.$$
 (7)

		0 31	~	4	-
±0,:	3	±0	,4	±(),5

ð	0	±0,1	±0,2	±0,3	±0,4	±0,5
у постоянного фильтра	1,03	1,03	1,04	1,06	1,09	1,14
v адаптивного фильтра	1,03	1,04	1,06	1,11	1,21	1,41

		ца 2				
Алгоритм	ρ	0,01	0,005	0,002	0,001	0,0005
Пороговое выделение	a	0,008	0,015	0,040	0,045	0,069
Постоянный фильтр	α	0,004	0,007	0,020	0,031	0,059
Адаптивный фильтр	а	0,003	0,006	0,015	0,027	0,041

В табл. 1 приведена теоретическая зависимость «качества» фильтрации от δ. Под качеством в данном случае принято изменение отношения сигнал/шум v. В первой строке таблицы приведены значения у при использовании фильтра с постоянными коэффициентами:

$$\varphi_{-1}(0)=0,125,$$

$$\varphi_0(0)=0,75,$$

$$\varphi_1(0)=0,125,$$

а во второй строке для сравнения — при использовании адаптивного фильтра (7).

Проверка работоспособности и эффективности алгоритма также осуществлялась на модельных и экспериментальных данных.

Моделировалось двумерное

случайное поле, на которое нанесена 1000 точечных объектов с отношением w = *энергия объекта/шум», равным 4, т. е.

$$\sum_{l}\sum_{j}a_{l}\varphi(x_{i}-x_{l},\delta_{l})\psi(y_{j}-\eta_{l})/\sigma_{\text{myma}}=4.$$

После проведения фильтрации по оси У

$$w = \sum_{i} \hat{a}_{i} \varphi(x_{i} - x_{i}, \delta_{i}) / \sigma_{\text{myma}} \approx 6.7,$$

что эквивалентно диапазону отношения «сигнал/шум» $\approx 3.4 + 5.0$. Проведение адаптивной фильтрации по оси X позволило увеличить это отношение до 4,7 + 5,2 и достаточно надежно выделить объекты. В табл. 2 приведена зависимость вероятности пропуска объектов α от вероятности ложной тревоги eta для трех алгоритмов — пороговое выделение объектов, поиск объектов фильтром с постоянными коэффициентами и адаптивным фильтром.

выводы

Проведенные теоретические и экспериментальные исследования показывают, что предлагаемый алгоритм обладает более высокой вероятностью обнаружения, но при этом требует более сложной системы обработки. Поэтому его использование оправдано в системах, где «стоимость» пропуска объекта достаточно высока.

СПИСОК ЛИТЕРАТУРЫ

- 1. Прэтт У. Цифровая обработка изображений. М.: Мир, 1982.
- 2. Леман Э. Проверка статистических гипотез. М.: Наука, 1964.
- 3. Киричук В. С. Многоканальная линейная фильтрация // Автометрия. —1988. —№ 3.

Поступила в редакцию 14 января 1994 г.