РОССИЙСКАЯ АКАДЕМИЯ НАУК СИБИРСКОЕ ОТДЕЛЕНИЕ

АВТОМЕТРИЯ

Nº 3

1993

УДК 535.232.65

М. В. Базанов, Е. Ф. Пен, П. Е. Твердохлеб

(Новосибирск)

ПЛАНАРНЫЕ ГОЛОГРАФИЧЕСКИЕ РАСЩЕПИТЕЛИ ДЛЯ ФОРМИРОВАНИЯ ОБЪЕМНЫХ МЕЖСОЕДИНЕНИЙ

Рассматриваются расщепители пучков света для формирования объемных межсоединений, использующие планарные свстоводы на основе эффекта полного внутреннего отражения и голографические решетки ввода/вывода излучения. Показано, что в таких расщепителях предпочтительны многопучковые решетки вывода излучения, поскольку с учетом реальных потерь света в материале голограммы они обеспечивают существенно больший (в десятки раз) коэффициент полезного использования мощности источника света, чем однопучковые решетки.

Введение. Одним из важных элементов трехмерных (3-D) оптических интегральных схем являются расщепители пучков света, предназначенные для мультиплицирования оптического сигнала как в пределах плоскости, так и между плоскостями (например, матричного модулятора света и линейки фотоприемников) [1]. Такие расщепители могут быть созданы с использованием волноводных голограмм [2] или планарных световодов на основе эффекта полного внутреннего отражения и голографических решеток ввода/ вывода излучения [3-5]. Главные достоинства планарных световодов заключаются в соединении преимуществ интегральной оптики (компактность и жесткость конструкции) с возможностями оптических систем, работающих в свободном пространстве (трехмерные оптические связи без кросс-помех, умеренные требования к прецизионности стыковки элементов).

Основные проблемы при создании расщепителей рассматриваемого типа заключаются в обеспечении высокой эффективности ввода/вывода излучения в подложку, а также одинаковой интенсивности выходных пучков.

В идеальном случае входной пучок Іо должен полностью трансформироваться в пучок подложечной моды, который, в свою очередь, по мере распространения частично выводится через голографические решетки (рис. 1). При этом дифракционная эффективность решеток должна изменяться по закону

$$\eta_n = 1/(N-n+1),$$

где N — количество решеток, n — номер текущей решетки, а интенсивность

любого из N выходных пучков равна Io/N. Например, для N = 64 $\eta_1 = 1,5$ %, $\eta_N = 100 \%, I_1 = I_n = I_{64} = I_0/64.$

Однако наличие потерь света в материале голограммы и подложки показывает, что реальная эффективность таких расщепителей существенно ниже расчетной [6].

В настоящей работе дано сравнение планарных расщепителей с однопучковыми и многопучковыми решетками и показано, что последние из них обладают более вы-

Puc. 1

64

.

соким коэффициентом полезного использования мощности источника света.

Однопучковые решетки ввода/вывода излучения. Пусть пучок света с длиной волныλ падает по нормали к плоскости решетки ввода. Необходимо, чтобы в результате дифракции на решетке пучок вошел в подложку под углом полного внутреннего отражения α . Примем для определенности $\alpha = 45^{\circ}$, а $n_c = 1,516$ и $n_h = 1,50$, гдс n_c и n_h — коэффициенты преломления стекла подложки

и регистрирующей среды. Угол дифракции в среде голограммы а' должен удовлетворять соотношению $\sin\alpha/\sin\alpha' = n_c/n_h$, $\alpha' = 44,4^\circ$. Если длина волны излучения, используемого при записи решетки ввода, совпадает с λ , то очевидно, что угол падения опорного пучка в воздухе должен составлять ~ 90°. В связи с этим целесообразно решетку ввода записывать со стороны

подложки, а для ввода опорного пучка можно использовать стеклянную призму (рис. 2). Для обеспечения оптического контакта между призмой и подложкой в экспериментах использовалась иммерсионная жидкость.

Очевидно, что решетка вывода пучка из подложки аналогична решетке ввода, отличие состоит только в том, что теперь входным является пучок, распространяющийся в подложке.

Голографические решетки вывода записываются таким же образом, как и решетки ввода (т. с. со стороны подложки и с использованием призмы для ввода опорного пучка в подложку). Для получения N выводных пучков необходимо последовательно записать N решеток путем перемещения регистрирующей среды на расстояние $2(t_c + t_h)$, где t_c , t_h — соответственно толщины подложки и регистрирующего слоя.

Ранее отмечено, что в идеальном расщепителе для обеспечения равенства интенсивности выходных пучков дифракционная эффективность (ДЭ) решеток должна удовлетворять соотношению $\eta_n = 1/(N - n + 1)$. Однако здесь не учтены потери при распространении света в подложке и регистрирующем слое. Пусть α_c , α_h и l_c , l_h — соответственно коэффициенты затухания света и длина пути пучка света между соседними решетками в материале подложки и регистрирующей среды. Тогда, полагая, что интенсивность света затухает по экспоненциальному закону, можно показать, что для обеспечения равенства интенсивности выходных пучков дифракционная эффективность решеток должна быть равна

$$\eta_n = \frac{\exp[z_0] - 1}{\exp[z_0(N - n + 1)] - 1},$$

а интенсивность I_n каждого из выходных пучков равна

$$I_n = \frac{I_0 \exp[-z_0(N+1)](1-\exp[-z_0])}{1-\exp[-z_0N]},$$

где $z_0 = \alpha_c l_c + \alpha_h l_h$, I_0 — интенсивность входного пучка, N — количество решеток. Эти соотношения получены в предположении, что ДЭ последней решетки равна 100 % и другие виды потерь света (кроме затухания) не учитываются.

В табл. 1 приведены расчетные значения ДЭ первой решетки, интенсивности каждого из пучков, общей эффективности расщепителя Q (без учета потерь при вводе излучения) при нескольких значениях коэффициентов затухания α_c, α_h (первая пара чисел получена экспериментальным путем, вторая — соответствует лучшим литературным данным).

Из таблицы следует, что затухание света играет существенную роль и его необходимо учитывать при проектировании и изготовлении планарных расщепителей. Выясняется, что при большой величине затухания практически невозможно обеспечить необходимое значение дифракционной эф-

фективности первой (и ближайшей к ней) решетки с достаточной точностью. Очевидно, что при подборе регистрирующей среды и подложки необходимо выбирать материалы с малым затуханием, вместе с тем ясно также, что при коэффициенте затухания среды $\alpha_h \ge 1$ cm⁻¹ (это соответствует примерно 3,7 дБ/см) расщепители на основе однопучковых решеток при N > 32 становятся малоэффективными.

Другое существенное ограничение таких расшепителей состоит в том, что расстояние между выходными пучками Т зависит от толщины подложки

и регистрирующей среды. Например, при $t_c + t_h \ge 0,1\,$ мм $T\ge 0,25\,$ мм.

Многопучковые решетки. Простейшая многопучковая решетка может быть получена путем записи нескольких наложенных с определенным сдвигом (шагом) однопучковых решеток (рис. 3). Здесь Г₁, Г₂, Г₃, ..., Г_к — наложенные со сдвигом Т субголограммы. При одновременном восстановлении такой совокупности голограмм получим линейный растр из к пучков. Если расщепитель содержит М многопучковых решеток, общее количество пучков равно $N = (M \times K)$. Видно, что в этом случае T не зависит от толщины подложки и регистрирующей среды. Расстояние между группами пучков равно $T_0 = 2(t_c + t_h) - T(K - 1)$. Если необходимо обеспечить условие $T_0 = T$, толщины подложки и среды должны удовлетворять соотношению

$$t_c + t_h = TK/2,$$

например, при T = 25 мкм, K = 8, $t_c + t_h = 100$ мкм диаметр отдельной субголограммы d = 50 мкм, диаметр опорного пучка в направлении регистрации, совпадающий с размером многопучковой решетки, $D_h = 225\,$ мкм, расстояние между решетками 200 мкм.

Рассуждая так же, как и в случае однопучковых решеток, получим, что эффективность многопучковых решеток должна удовлетворять соотношению $\frac{1}{\exp[z_0(M-m+1)]-1}$, при этом интенсивность каждого из выходных пуч- $\exp[z_0] - 1$

 $\eta_m =$

ков будет равна

$$I_n = \frac{I_0}{K} \frac{\exp[-z_0(M+1)](1-\exp[-z_0])}{1-\exp[-z_0M]},$$

где М — количество решеток, К — количество пучков в решетке, Іо — интенсивность входного пучка, т — номер текущей решетки.

В табл. 2 приведены расчетные данные η_1 , I_n и общей эффективности расщепителя при тех же значениях α_c и α_h , что и в табл. 1, и при K = 8.

Сравнивая табл. 1 и 2, видим, что с ростом потерь света расшепители на основе многопучковых решеток обеспечивают существенно большую интенсивность выходных пучков и общий ко-

Puc. 3

эффициент полезного использования мощности входного пучка. Например, при N = 32 этот выигрыш составляет 25 раз (при $\alpha_c = 0,1$ см⁻¹ и $\alpha_b = 6,35$ см⁻¹).

Столь значительные потери света при применении однопучковых решеток в сравнении с многопучковыми обусловлены большой суммарной длиной взаимодействия света со средой голограммы. При общем количестве пучков N и толщине среды t_h эта длина составляет $l = N2\sqrt{2} t_h$, а для многопучковых решеток l' = l/K, где K — количество пучков в одной решетке.

Заключение. В работе сравниваются характеристики однопучковых и многопучковых планарных расшепителей света для организации межсоединений в 3 – D оптических микросхемах. Показано, что в таких микросхемах предпочтительно применять многопучковые решетки вывода излучения, поскольку при учете потерь света в материале голограммы они обеспечивают существенно больший (в десятки раз) коэффициент полезного использования мощности источника света, чем однопучковые решетки. Если коэффициент затухания света составляет ~ 3 дБ/см, то на основе многопучковых решеток

можно изготовить расщепители с количеством выходных пучков N = 1024 и с коэффициентом полезного использования мощности лазера ~ 50 %.

СПИСОК ЛИТЕРАТУРЫ

- 1. Козик В. И., Твердохлеб П. Е. 3-D оптические интегральные схемы ассоциативной памяти // Автометрия.—1993.—№ 3.
- Lin F., Strzelcski E. M., Jannson T. Optical multiplanar VLSI interconnects based on multiplexed waveguide holograms // Appl. Opt.-1990.-29, N 8.
- 3. Janus J., Huang A. Planar integration of free-space optical components // Appl. Opt. -- 1989. -- 28, N 7. -- P. 1602.
- Kubota T., Takeda M. Integrated-optical array illuminator // Optical Computing: Intern. Top. Meeting, Kobe, Japan, 1990.—P. 293.
- Pen E. F., Sinyukov A. M., Shelkovnikov V. V. High efficiency substrate mode holograms on photopolymer for interconnects // Optical Computing: Intern. Top. Meeting, Minsk, Republic of Belarus, 1992.—P. 30D15.

Поступила в редакцию 9 марта 1993 г.