3. Andersen H. H., Ziegler J. F. Hydrogen Stopping Powers and Ranges in All Elements .-- N.Y.: Pergamon Press, 1977.

- 4. Ziegler J. F. et al. The Stopping and Range of Ions in Solids. N.Y.: Pergamon Press, 1985.
- 5. Андросенко А. А., Андросенко П. А., Полетаев Е. Д. Применение метода Монте-Карло для оценки пространственно-временного распределения энерговклада осколков деления.-Обнинск, 1989.— (Препр. ФЭИ; 1968).
- 6. Biersack J. P., Haggmark L. G. A Monte-Carlo computer program for the transport of energetic ions in amorphours targets // Nucl. Instrum. & Meth.-1980.-174.-P. 257.
- 7. Biersack J. P. et al. Rapid computable formulas for the classical binary collision parametrs r and  $\theta$  // Radiat. Eff. Lett.—1985.—85.—P. 193.
- 8. Ziegler J. F., Biersack J. P., Littmark U. Stopping Powers and Rangers of Ions in Matter /Ed. J. F. Ziegler.-N.Y.: Pergamon Press, 1985.-Vol. 1.

Поступила в редакцию 11 ноября 1991 г.

УДК 621.382.323:519

#### П. П. Люмаров

#### (Новосибирск)

## МОНОТОННЫЕ СПЛАЙНЫ НА АДАПТИВНЫХ СЕТКАХ ТРЕХ ПЕРЕМЕННЫХ ДЛЯ ЭЛЕКТРИЧЕСКИХ МОП-МОДЕЛЕЙ

Типичными недостатками табличных моделей являются значительные относительные погрешности токов в окрестности пороговых напряжений и трудности в обеспечении монотонной интерполяции. Применение сглаживающих алгоритмов, обеспечивающих монотонность, часто обостряет проблему точности моделей. По-строением оригинальных адаптивных сеток и комбинированием монотонной бикубической интерполяции со сгла живающей параболической аппроксимацией обеспечивается значительный прогресс в решении этих двух проблем одновременно.

Введение. При переходе к субмикронным размерам элементов МОП СБИС поддержание требуемой точности аналитических моделей становится все более трудной задачей. Поэтому перспективной является разработка моделей, основанных на алгоритмах многомерной интерполяции «экспериментальных» токовых значений, полученных с помощью тестовых транзисторов или программ приборного моделирования. Аргументы модели для программы схемного моделирования делятся на управляющие переменные U<sub>D</sub>, U<sub>B</sub>, U<sub>G</sub> (меняются в процессе расчета схемы) и конструктивно-электрофизические параметры, сохраняющиеся в процессе моделирования. Напряжение U<sub>D</sub> (сток исток) обозначим через x, напряжение U<sub>B</sub> (подложка — исток) — через y, напряжение  $U_G$  (затвор — исток) — через z.  $U_D$  всегда > 0, поэтому ниже под всей областью управляющих переменных R<sup>3</sup>будет пониматься только ее верхняя половина x > 0.

Основные проблемы интерполяционных моделей МОП-транзистора обеспечение монотонности и неотрицательности токового интерполянта и его продолжения на всей области R<sup>3</sup> для сходимости ньютоновских итераций при расчете схем и снижение относительной точности интерполяции при малых токах, т. е. в окрестности границы носителя токовой функции.

Продолжение токового интерполянта, удовлетворяющее условиям неотрицательности, гладкости класса C<sup>1</sup> и монотонности во всей R<sup>3</sup>, в дальнейшем будем называть допустимым.

В [1] использовались сглаживающие параболические сплайны, обеспечивающие монотонность интерполянта при монотонности исходных данных. Основной недостаток этого подхода связан с нарушением условия неотрицательности продолжения токовой функции и неточностью ее аппроксимации в припороговой области затворных напряжений. Вызвано это использованием токовых сеток, не совпадающих с границей носителя функ-

ции, и линейным продолжением по приграничным данным, а не с помощью граничных производных. Последнее дополнительно ухудшает точность интерполяции в окрестности границы носителя токовой функции.

В [2] предложена оригинальная конструкция монотонных параболических сплайнов, устойчивая к значительным погрешностям в данных и эффективная по времени выполнения, однако ей присущи все недостатки предыдущей работы и требуется неприемлемо большое время препроцессорной оптимизации параметров сплайна (например, для сетки, содержащей 7 × 7 × 3 сегментов, время оптимизации 722 мин).

Данная работа развивает подход [3], при котором с помощью преобразования управляющих персменных (x, y, z) во внутренние переменные  $(\xi, \eta, \zeta)$  удается отобразить криволинейную область, одна из границ которой совпадает с носителем токовой функции, в требуемую для сплайнов тензорного произведения, прямоугольную. В основе преобразования переменных (x, y, z) в  $(\xi, \eta, \zeta)$  лежит пороговая функция двух переменных  $V_{TH}(x, y)$ . Типичное выражение функции  $V_{TH}$  малоразмерной аналитической модели приведено в [4]. В рассматриваемой модели при построении токовой сетки трех переменных, а также при интерполяции токовой функции вначале выполняется интерполяция  $V_{TH}(x, y)$  на прямоугольной области. Совмещение границы носителя токовой функции с одной из границ области интерполяции повышает информативность токовой сетки, обеспечивает допустимое продолжение интерполянта и увеличивает его точность.

В данной работе решена проблема монотонности интерполянта и его продолжения во всей  $R^3$ , а не только вдоль направлений, проходящих через узлы сетки, и за счет оригинальных адаптивных сеток удалось при общем сокращении числа узлов интерполяции повысить точность модели в окрестности границы носителя токовой функции, т. с. расширить диапазон разброса токов, уверенно воспроизводимых моделью, с 2 до 4 порядков.

Предположив, что токовые и пороговые функции принадлежат классу  $W^2_{\infty}[a, b]$ , воспользуемся известной оценкой точности интерполяции  $\varepsilon$  таких функций эрмитовыми кубическими сплайнами:  $\varepsilon \approx h^2 |f(x)|_{\infty} \approx h^2 k$ , где h — шаг интерполяции, k — кривизна функции. Эта обратная пропорциональность шага от кривизны (при фиксированной точности) будет учитываться в эмпирических алгоритмах выбора шагов сетки.

1. Аппроксимация сплайнами пороговых напряжений. Функция  $V_{TH}(x, y)$  определена на области [0,  $x_{max}$ ][ $y_{min}$ , 0]. В соответствии с кривизной реальной функции  $V_{TH}$  шаг сетки по координате x плавно возрастает с ростом x и в среднем в 3—5 раз больше, чем шаг по координате y, который плавно убывает с ростом y и имеет минимальное значение при  $y = y_{max} = 0$ . Чтобы избежать лишних затрат, связанных с поиском сегментов интерполяции в неравномерной сетке, а также с затратами на расчет по более громоздким формулам аппроксимации, выполним замену переменных (x, y) в переменные ( $\omega, \tau$ ) с равномерной сеткой (будем называть их внутренними переменными пороговой сетки). Приведем один из возможных эмпирических алгоритмов, удовлетворяющий перечисленным требованиям:

$$x = \omega_{\max}((1 + \omega/D_{\omega})^{2} - 1)/((1 + \omega_{\max}/D_{\omega})^{2} - 1);$$
(1)

$$y = -\tau_{\max} \{ 1 - (1 + (\tau_{\max} - \tau)/D_t)^2 \} / (1 - (1 + \tau_{\max}/D_t)^2).$$
(2)

В этих формулах параметры  $D_{\omega}$  и  $D_{\epsilon}$ , задающие нелинейность преобразований, подбираются эмпирически в соответствии с кривизной функции  $V_{TH}$ . Чем больше  $D_{\omega}$  и  $D_{\epsilon}$ , тем ближе сетка (x, y) к равномерной. Значениям  $\omega = 0$  и  $\tau = 0$  соответствуют x = 0 и  $y = -\tau_{\max} = y_{\min}; \omega = \omega_{\max}$  и  $\tau = \tau_{\max}$  соответствуют  $x = x_{\max}$  и  $y = y_{\max} = 0$ . При убывании  $D_{\omega}(D_{\epsilon})$  до значений порядка 0, 2-0, 5 (при  $\omega_{\max} = 6$ ) в деформации шагов наступает насыщение, однако на практике той степени деформации, которую дают формулы (1) и (2), достаточно. В [3] приведены формулы (2), (3) с неограниченными возможностями по степени

деформации, но менее удобные в вычислительном отношении, так как содержат экспоненту.

Координаты узлов прямоугольной неравномерной сстки  $[x_i, y_j]$  получаются при подстановке в (1), (2) узлов равномерной сстки  $\{\omega_i, \tau_j\}$ . Перед выполнением аппроксимации (интерполяции) на сетке  $\{\omega, \tau\}$  по заданной точке (x, y) с помощью формул, обратных (1) и (2), определяется  $(\omega, \tau)$ . За пределами пороговой сетки выполняется линейная экстраполяция соответствующей переменной. Интерполянт пороговой функции и его гладкое продолжение должны быть монотонными в области  $R^2$ . Интерполяция  $V(\omega, \tau)$  может выполняться с помощью как монотонных бикубических сплайнов, так и базисных сглаживающих бипараболических сплайнов. Пороговая сетка для интерполяционных сплайнов требует в 4 раза больше памяти за счет массивов производных и обеспечивает в среднем на порядок более высокую точность. Поэтому при наличии точных пороговых и токовых ссточных данных предпочтение отдается бикубической интерполяции. Алгоритмы сглаживающей бипараболической аппроксимации и монотонной бикубической интерполяции на прямоугольных сетках можно найти в  $\{1\}$ и  $\{5\}$ соответственно.

Полученное значение функции  $V(\omega, \tau)$  совпадает со значением  $V_{TH}(x, y)$ . Производные  $\partial V_{TH}(x, y)/\partial x$  и  $\partial V_{TH}(x, y)/\partial y$  рассчитываются как производные сложной функции с помощью  $V'_{on}$ ,  $V'_{t}$  и частных производных от формул, обратных (1), (2). Так как (1), (2) и интерполянт  $V(\omega, \tau)$  монотонны в  $R^2$ , то и  $V_{TH}(x, y)$  будет монотонной в  $R^2$ .

В системе предусмотрено повторное измерение пороговых сеточных напряжений при нарушении их монотонности, хотя на практике такая ситуация не встречается.

2. Построение адаптивной сетки. Переход к эффективному затворному напряжению и осуществляется сдвигом абсолютного затворного напряжения z на величину порогового напряжения:  $\nu = z - V_{TH}(x, y)$ . В результате такого преобразования полупространство (x, y, v) (где v > 0, а x, у любые) совпадает с носителем токовой функции. В новых переменных токовая функция  $\varphi(x, y, \nu)$  в отличие от исходной F(x, y, z) слабо зависит от у. Будем называть направление у линией уровня  $\varphi(x, y, v)$ . Сстка по переменным v и у выбирается неравномерной в соответствии с кривизной  $\varphi(x, y, v)$ . Преобразование переменных  $\nu$  и у в  $\zeta$  и  $\eta$  по формулам, обратным (1) и (2) (с заменой в них  $\omega$ ,  $D_{\omega}$  и  $\omega_{\max}$  на  $\zeta$ ,  $D_{\zeta}$ ,  $\zeta_{\max}$ , а  $\tau$ ,  $D_{\iota}$  и  $\tau_{\max}$  на  $\eta$ ,  $D_{\eta}$  и  $\eta_{\max}$ ), позволит получить токовую функцию  $\Theta(x, \eta, \zeta)$  с равномерной сеткой по  $\zeta$ - и  $\eta$ -переменным. В [3] показано, что относительная ошибка интерполяции резко возрастает при малых и (малых  $\xi$ ). Рассмотрим две стоковые характеристики на рис. 4 с  $U_G = 1,7$  В  $(\nu_1 \approx 0,4)$  и  $U_G = 6$  В  $(\nu_2 \approx 4,7)$ . Участок с наибольшей кривизной характеристики  $\nu_1$  располагается в окрестности стокового напряжения  $x_1 \approx \nu_1, \tau, c, s$ окрестности напряжения насыщения стоковой характеристики. В этой окрестности должно быть, по крайней мере, несколько узлов для обеспечения приемлемой точности интерполяции. На большей части стоковой и-характеристики правсе x1 кривизна близка к нулю и шаг интерполяции может быть большим. Для стоковой характеристики с  $v_2 >> v_1$  кривизна имеет значительно меньший разброс значений и ес максимум находится в окрестности  $x_2 \approx v_2$ , т. е. узлы окрестности х<sub>1</sub> не требуются. Поэтому оптимальна сетка, у которой второй узел по x-координате пропорционален как  $\zeta/\zeta_{max}$  или  $\nu/\nu_{max}$ , так и ξ<sub>2</sub>-координате, а последний совпадает с правой границей *x*-области интерноляции  $x_{\max} = \xi_{\max}$ . Все остальные узлы от  $x_2$  до  $x_{\max}$  могут логарифмически равномерно заполнять оставшийся промежуток. Это означает, что х должна быть функцией ў и ў.

Построение данного преобразования будем выполнять в обратном направлении. Вначале осуществим переход от координат ( $\xi$ ,  $\zeta$ ), имеющих прямоугольную и равномерную сетку (последнее не обязательно), к криволинейным координатам ( $\psi$ ,  $\zeta$ ), имеющим косоугольную сетку. Узлы такой сетки стягива-

ются к нулевой окрестности при  $\zeta \rightarrow 0$ . Параметр  $\varepsilon$  препятствует вырождению этой косоугольной сетки при  $\zeta = 0$ . Это преобразование задается с помощью  $\psi(\zeta) = \xi(\zeta + \varepsilon)/(\zeta_m + \varepsilon)$ . При этом узлам сетки  $\xi_i$  будут соответствовать узлы  $\psi_i(\zeta) = \xi_i(\zeta + \varepsilon)/(\zeta_m + \varepsilon)$ , т. е.  $\psi_2 \approx \xi_2 \zeta$ . Затем осуществим нелинейное растяжение сетки в направлении *x*-координаты с коэффициентом растяжения, пропорциональным  $\psi$ , причем таким образом, чтобы нулевому значению  $\xi_1$ соответствовало бы нулевое значение  $x_1$ , значение  $x_2(\zeta)$  было бы близко к  $D_{\psi}(\zeta) = D_{\xi}(\zeta + \varepsilon)/(\zeta_m + \varepsilon)$ , т. е.  $D_{\psi}(\zeta) \approx D_{\xi}\zeta$ , а значение  $x_m(\zeta)$  совпадало бы с  $\xi_m$ . Преобразование, удовлетворяющее этим требованиям, имест вид

$$x(\xi,\zeta) = D_{\psi}(\zeta) \exp\left\{\frac{\xi}{\xi_m} \ln((\xi_m + D_{\psi}(\zeta))/D_{\psi}(\zeta))\right\} - D_{\psi}(\zeta), \qquad (3)$$

где  $x_2(\zeta) \approx D_{\psi}(\zeta) \approx D_{\xi}\zeta$ , при этом узлы  $x_i(\zeta)$  логарифмически равномерно заполняют отрезок значений от  $D_{\psi}(\zeta)$  до  $\xi_m$ . Разрешая (3) относительно  $\xi$ , полу-

— по заданным  $\xi_i$ ,  $\eta_j$ ,  $\zeta_k$  с помощью (3) и выражений, аналогичных (1) и (2), определяются узлы криволинейной сетки:  $x_{ik}$ ,  $y_j$ ,  $z_{ijk}$  (x зависит только от  $\xi$  и  $\zeta$ , а y — от  $\eta$ ).

Как мы уже отмечали, у является линией уровня  $\varphi(x, y, \nu)$ , а направления  $\eta$  и  $\zeta$  совпадают с у и  $\nu$ , следовательно,  $\eta$  — линия уровня  $\Theta(x, \eta, \zeta)$ , а значит и линия уровня  $\Phi(\xi, \eta, \zeta)$ , так как x от  $\eta$  не зависит. Такое поведение  $\Phi(\xi, \eta, \zeta)$ позволяет по-новому организовать ее интерполяцию. По «главным» переменным ( $\xi$ ,  $\zeta$ ) выполняем монотонную бикубическую интерполяцию, а по  $\eta$ -направлению — сглаживающую параболическую аппроксимацию. Это, во-первых, позволит обеспечить высокую точность интерполянта и его допустимое продолжение. Действительно, на левой границе сетки по 5 узловые частные производные  $\Phi'_{\xi} = \Phi''_{\xi\xi} = 0$ , следовательно, для всех  $\xi$  при  $\zeta = 0$  $\Phi_{\xi}'\equiv 0,$  поэтому нулевое продолжение  $\Phi(\xi,\eta,\zeta)$  для  $\zeta<0$  будет допустимым. Значение переменной  $\xi$  не бывает отрицательным ( $U_D \ge 0$ ), поэтому продолжения левее сетки по $\xi$  не требуется. Производные  $\Phi'_{\xi}$  и  $\Phi'_{\xi}$  на правых границах ξ и ζ всегда больше нуля в силу монотонности, таким образом, правсе сеток продолжение всегда допустимо. Во-вторых, параболические базисные сплайны на неравномерной сетке уступают эрмитовым кубическим по времени интерполяции. По переменной ξ загущение сетки справа желательно для характеристик с лавинным умножением, а по переменной  $\zeta$  первый шаг может быть большим для транзисторов со встроенным каналом, чтобы перекрыть нерабочий участок затворной характеристики.

Так как  $\eta$ -направление совпадает с направлением линии уровня  $\Phi(\xi, \eta, \zeta)$ , то допустимым для него будет продолжение как левее, так и правее сетки с помощью постоянного значения, совпадающего со значением на соответствующей границе. Такое продолжение можно обеспечить как кубическими сплайнами (с помощью  $\Phi'_{\xi} = \Phi''_{\xi''} = \Phi''_{\xi''} = 0$  на левой и правой гранях по  $\eta$ ), так и локальными параболическими с продолжением по приграничным данным. Для этого на расстоянии  $H_{\eta}$  (где  $H_{\eta}$  — шаг вдоль  $\eta$ -переменной) левее и правее границы области условно вводится еще по одной сеточной плоскости данных со значениями, равными значениям на соответствующей границе.

Предпочтение отдадим комбинированной интерполяции, так как в этом случае вдвое сокращаются общие затраты памяти под массивы токовой функции, решается проблема обеспечения монотонности интерполянта и автоматически выполняется сглаживание данных вдоль направления  $\eta$ , которое в [3] приходилось выполнять дополнительно.

Измеренные в узлах сеточные значения должны быть монотонными по переменным ( $\xi$ ,  $\zeta$ ) и иметь незначительный разброс значений в направлении  $\eta$ . Последнее обеспечивается сглаживающими свойствами локального параболического сплайна. Если вдоль направления  $\zeta$ , близкого к градиенту  $\Phi(\xi, \eta, \zeta)$ , экспериментальные сеточные данные оказываются немонотонными, то они исключаются из рассмотрения. На практике такая ситуация до сих пор не встречалась. Вдоль  $\xi$ -направления на участке насыщения при малых  $\zeta$  в пределах точности измерения возможны нарушения монотонности данных. В этом случае используется алгоритм интегральной корректировки данных этой линии, приводящий к восстановлению монотонности на всей линии с минимально возможными изменениями в данных.

3. Параболическо-бикубическая аппроксимация. Расчет частных производных  $\Phi'_{\xi}$ ,  $\Phi'_{\zeta}$  и  $\Phi''_{\zeta}$ , удовлетворяющих достаточным условиям монотонности бикубического интерполянта, выполняется независимо на всех плоскостях  $\eta_i$  = const. На каждой такой плоскости все частные производные равны нулю на левой границе  $\zeta = 0$ . Этим ограничивается перечень граничных условий на частные производные.

Полное время расчета производных  $\Phi'_{\xi}$ ,  $\Phi'_{\zeta}$  и  $\Phi''_{\xi'}$ , обеспечивающих монотонность в  $\xi$ - и  $\zeta$ -направлениях, не превосходит время расчета 7 производных для трикубического эрмитового сплайна (далее в табл. 2 приведены эти времена в мс в качестве параметра  $T_{prel}$  для сеток двух размеров).

Параболическую аппроксимацию поясним с помощью рис. 2 из [1], на котором все *t*-переменные должны быть заменены на  $\eta$ -переменные. Предположим, что  $\eta$ -переменная расположена на отрезке от  $\eta_3$  до  $\eta_4$ . Отличные от нуля носители для такой точки будут иметь базисные сплайны  $B_1, B_2$  и  $B_3$ . Коэффициенты этих базисных сплайнов — значения сеточных функций  $\Phi(\xi, \eta_g^*, \zeta)$  в точке  $\eta_g^*, \ rде \eta_g^* = \eta_1^*, \eta_2^*$  и  $\eta_3^*$ . Таким образом, перед параболической аппроксимацией должны быть выполнены бикубические интерполяции по координатам  $\xi$  и  $\zeta$  на трех плоскостях с $\eta = \eta_g^*$ . В результате этих интерполяций будут получены  $\Phi(\xi, \eta_g^*, \zeta), \Phi'_{\xi}(\xi, \eta_g^*, \zeta)$  и  $\Phi'_{\zeta}(\xi, \eta_g^*, \zeta)$ . Если  $\eta$  оказывается расположенной между  $\eta_2$  и  $\eta_3$ , бикубическую интерполяцию (см. конец п. 2) нужно выполнять только на двух плоскостях  $\eta_1^*$  и  $\eta_2^*$ , а для  $\eta$  левее  $\eta_2$  аппооксимация по  $\eta$  заменяется постоянным значением и бикубическая интерполяция требуется только на одной граничной плоскости.

Поскольку локальная параболическая аппроксимация сохраняет свойства монотонности данных, то производные  $\Phi'_{\xi}$  и  $\Phi'_{\xi}$ , будучи положительными на плоскостях сетки, останутся такими же и во всей области интерполяции.

Бикубическая сплайновая интерполяция сводится к серии сплайновых интерполяций одной переменной [3].

Полученнос в результате интерполяции значение функции  $\Phi(\xi, \eta, \zeta) = F(x, y, z)$ . Частные производные F(x, y, z) получаются как производные сложной функции. Преобразование переменных (4) немонотонно, однако статистические проверки подтверждают монотонность F(x, y, z) по всем трем аргументам в случае монотонности  $\Phi(\xi, \eta, \zeta)$  по переменным  $\xi$  и  $\zeta$ .

4. Экспериментальная проверка новых моделей. Аналитические малоразмерные модели качественно отражают поведение реального транзистора, поэтому токовые и пороговые значения, полученные с их помощью, могут использоваться в качестве входных данных для интерполяционных моделей. Это позволяет произвести оценку точности различных алгоритмов интерполяции, не обращаясь к измерениям реальных приборов, и тем самым исключить при сравнении случайные погрешности измерения.

В табл. 1, 2 и на рис. 1—6 приняты одни и те же обозначения:  $A_e$  — абсолютная ошибка:  $A_e = |F_m - F_e|$ , где  $F_m$  и  $F_e$  — текущие значения токов модели и «эксперимента»;  $R_e$  — относительная ошибка:  $R_e = A_e/F_e$ ;  $M_e$  — усредненная ошибка:  $M_e = A_e/\max(F_e)$ ;  $S_{cat}$  — относительный разброс амплитуд токовой функции, в пределах которого подечитывались  $R_e$ - и  $M_e$ -ошибки;

 $S_{iib}$  — суммарный библиотечный размер исходных массивов экспериментальных данных, относящихся к одной модели (в словах);  $S_{int}$  — суммарный размер всех сеточных функций и их производных для одной модели во время интерполяции (в словах);  $T_{in}$  — время выполнения всей интерполяционной модели (в мс), включающее расчет аналитических зарядовых функций;  $T_{cur}$  — время интерполяции токовой функции и се трех частных производных (без учета времени интерполяции функции  $V_{TH}$ );  $T_{prel}$  — время предварительного расчета всех узловых частных производных пороговой и токовой сеточных функций (в мс);  $R_{nd}$  — количество отрицательных производных в % к общему числу испытаний сетки; Ti1 — эрмитовая трикубическая интерполяция; монотонность гарантируется только вдоль линий, параллельных координатным осям ( $\xi$ ,  $\eta$ ,  $\zeta$ ) и проходящим через узлы сстки; Ti2 — трилинейная интерполяция; Ti4 — монотонная параболическо-бикубическая аппроксимация; Ti4 — монотонная линейно-бикубическая интерполяция; линейная интерполяция; выполняя интерполяция; параление).

Оценка точности интерполяции проводилась статистическим методом. Чтобы сделать максимальную относительную ошибку чувствительной к точности алгоритма интерполяции, из рассмотрения исключаются случайные числа, попадающие в  $\varepsilon_2$ -окрестность носителя токовой функции. Так как равномерное распределение не обеспечивает достаточную плотность случайных точек на внешней  $\varepsilon_2$ -окрестности носителя, используются поочередно равномерное и равномерно-логарифмическое распределения от  $\varepsilon_2$  до  $g_{max}$ , где  $g_{max}$ равно  $x_{max}$  или  $z_{max}$ . При этом первое будет хорошо соответствовать поиску максимальной абсолютной ошибки, а второе — поиску максимальной относительной ошибки. Каждой такой исключаемой  $\varepsilon_2$ -окрестности будет соответствовать свое минимальное значение токовой функцки, т. с. определенное значение  $S_{cat} = F_{max}/F_{min}$ . На рис. 1—3 интерполяция *Til* отмечается итрихпунктиром, *Ti2* — точками, *Ti3* — штриховой, а *Ti4* — сплошной

На рис. 1 для сетки 23 × 3 × 20 приведена зависимость относительной ошибки  $R_c$  (в логарифмических масштабах) как функция параметра относительной деформации  $\varepsilon_{\text{отн}} = \varepsilon/\zeta_m$ . Диапазон разброса токов (параметр  $S_{cat}$ ) при подечете относительных ошибок выбирался равным 7000. Данные для трикубической и трилинейной интерполяций предварительно сглаживались вдоль линии уровня для исключения нарушений монотонности по у-координате. Видно, что относительная ошибка плавно возрастает от 3 до 5 % при изменении  $\varepsilon_{\text{отн}}$  от 10<sup>-5</sup> до 10<sup>-2</sup>. При дальнейшем увеличении  $\varepsilon_{\text{отн}}$  ошибка  $R_c$ нарастает значительно и уже при  $\varepsilon_{\text{отн}} = 0,33$  составляет 60 %. Неадаптивная сетка ( $\varepsilon_{\text{отн}} = \infty$ ) даст относительную ошибку 70 %. Усредненные ошибки у



Puc. I









Puc. 3

адаптивной и неадаптивной сеток совпадают. На рис. 2 и 3 также в логарифмических масштабах приведены зависимости относительной ошибки  $R_e$  от разброса диапазона токов  $S_{cat}$ , в котором подсчитывалась ошибка соответственно для неадаптивной ( $\varepsilon_{orn} = \infty$ ) и адаптивной ( $\varepsilon_{orn} = 10^{-5}$ ) сеток. Видно, что для параболическо-бикубической интерполяции (Ti3) диапазоны разбросов токов на уровне относительной ошибки  $R_e = 3,5$  % отличаются в 70 раз, для трикубической интерполяции (Ti1) (на уровне относительной ошибки  $R_e = 8$  %) в 200 раз.

В табл. 1 приведены максимальные ошибки интерполяции двух сеток для токовых характеристик, моделирующих эффект лавинного умножения. Для сетки  $9 \times 3 \times 7$  при трикубической интерполяции появляются нарушения монотонности. В случае монотонной интерполяции (*Ti*3 и *Ti*4) эти нарушения отсутствуют.

В табл. 2 приведены процессорные времена (в мс) выполнения на ЭВМ EC-1061 малоразмерной аналитической и интерполяционной моделей и их основных программных компонентов. Там же указан размер памяти в зависимости от числа узлов интерполяции. Для сравнения укажем, что процессорнос время выполнения малоразмерной аналитической модели на неоднородной подложке составляет 5 мс.

|                 |                  |      |                       | . 1  | Габли          | ца 1            |
|-----------------|------------------|------|-----------------------|------|----------------|-----------------|
| Сегка х × у × г | <sup>е</sup> отн | Scat | Тип интер-<br>поляции | Me   | R <sub>e</sub> | R <sub>nd</sub> |
|                 |                  |      | Til                   | 1,23 | 46,9           | 0,51            |
| 9 × 3 × 7       | 0,001            | 3000 | Ti2                   | 2,08 | 64,7           | 0,02            |
|                 |                  |      | Ti3                   | 1,00 | 50,1           | 0               |
|                 |                  |      | Ti4                   | 1,00 | 50,1           | • 0 -           |
|                 |                  |      | Ti1                   | 0,91 | 10,7           | 0               |
| 17 × 3 × 15     | 0,0001           | 3400 | Ti2                   | 0,98 | 21,8           | 0               |
|                 |                  |      | Ti3                   | 0,72 | 9,5            | 0               |
|                 |                  |      | Ti4                   | 0,71 | 9,4            | 0               |

|                         | Υ                |     |      |                   | 1 4 0 2 2        | ца   |
|-------------------------|------------------|-----|------|-------------------|------------------|------|
| Сетка                   | S <sub>lib</sub> | Тип | Sint | T <sub>prel</sub> | T <sub>cur</sub> | Tim  |
|                         |                  | Til | 1157 | 120,5             | 1,68             | 4,01 |
| $5 \times 3 \times 7$   | 371              | Ti2 | 422  | 54,0              | 0,61             | 3,33 |
| 105 узлов               |                  | Ti3 | 557  | 93,5              | 1,54             | 3,80 |
|                         |                  | Tı4 | 557  | 93,5              | 1,22             | 3,53 |
|                         |                  | Ti1 | 3704 | 433,5             | 1,71             | 4,00 |
| $12 \times 3 \times 11$ | 831              | Ti2 | 932  | 193,5             | 0,64             | 3,32 |
| 396 узлов               |                  | Ti3 | 1790 | 377,0             | 1,58             | 3,78 |
|                         |                  | Ti4 | 1790 | 377,0             | 1,28             | 3,48 |

Для проверки устойчивости алгоритмов к ошибкам данных с помощью аналитической модели на сетке  $12 \times 3 \times 11$  формировались две интерполяционные модели с токовыми сеточными функциями  $\{F_{ijk}\}$  и  $\{P_{ijk}\}$ , где  $F_{ijk}$ — значение аналитической модели при  $V_{Di}$ ,  $V_{Bj}$ ,  $V_{Gk}$ , а  $P_{ijk}$ — равномерно распределенные случайные значения в интервале  $F_{ijk}(1 - R_a) \leq P_{ijk} \leq F_{ijk}(1 + R_a)$ ,  $R_a$ — заданная относительная амплитуда возмущения. Каждая из интерполяционных моделей сравнивалась с аналитической на случайном наборе потенциалов внутри сетки для оценки увеличения максимальных  $R_e$  и  $M_e$  при переходе от сетки  $\{F_{ijk}\} \kappa \{P_{ijk}\}$ . При  $R_a = 0,3$  %  $R_e$  увеличивалась на 0,063 %,  $M_e$ — на 0,113 %, а при  $\kappa_a = 3$ %  $R_e$  увеличивалась на 1,07 %,  $M_e$ — на 0,97 %, что подтверждает устойчивость предложенных алгоритмов интерполяции к погрешностям измерений.

В табл. З для тестового транзитора с длиной канала З мкм и шириной таблица З 20 мкм сравниваются точности вос-

|                  |                             |       | Табл                       | ица З |  |
|------------------|-----------------------------|-------|----------------------------|-------|--|
| S <sub>cat</sub> | Аналитическая модель<br>cat |       | Интерполяционная<br>модель |       |  |
|                  | Me                          | Re    | Me                         | Re    |  |
| 2000             | 8,41                        | 99,0  | 1,04                       | 50,37 |  |
| 600              | 8,41                        | 47,16 | 1,04                       | 2,72  |  |
| 100              | 8,41                        | 13,21 | 1,04                       | 2,24  |  |

.

-

роизведения экспериментальых характеристик с помощью маоразмерной аналитической одели [6] и интерполяционной о × 4 × 8).

Чтобы получить данные в табл. 3 с помощью тестового транзистора, зондовой установки и программно-измерительного комплекса, были сняты три набора измерительной информации:

Таблица 2





1 — пороговая сетка  $5 \times 18$  для  $_{I,MA}$  интерполяционного транзистора;

2 — токовая сетка для интерполяционного транзистора, содержащая  $5 \times 4 \times 8 = 160$  измеряемых значений (токи при нулевых напряжениях на стоке не измеряются); этот же набор применяется для подгонки параметров аналитической модели с помощью программы оптимизации, использующей алгоритм сопряженных направлений Пауэлла [7];

3 — статистический набор токовых значений общим объемом 600 данных; стоковые, затворные и напряжения подложки для этого набора выбирались случайным образом внутри сетки.

Сравнение трех значений токов, полученных непосредственно из эксперимента и с помощью двух моделей, *Q25* позволило получить ошибку каждой из них в текущей точке статистического набора. Из таблицы видно, что подогнанная аналитическая модель уступаст интерполяционной в среднем на порядок по относительной и усредненной (абсолютной) ошибкам.



Puc. 6

Точность измерения всех токовых данных составила около 2 %, а пороговых — около 0,5 %. Контроль точности осуществлялся путем 6-кратного повторения каждого из трех измерительных наборов.

Данные для рис. 4—6 в третьем наборе содержат все виды вольт-амперных характеристик (сплошной линией отмечены экспериментальные вольт-амперные характеристики, точками — характеристики, смоделированные с помощью интерполяционного транзистора, штрихпунктиром — характеристики подогнанной под эксперимент малоразмерной аналитической модели, а штриховой линией — характеристики подогнанной большеразмерной модели [8]). Для интерполяционного транзистора была выбрана сетка 9 × 3 × 8 = 216 узлов.

Заключение. Разработанный алгоритм позволил создать относительно компактные по числу узлов данных и занимаемой оперативной памяти интерполяционные модели. Решение проблемы монотонности значительно упростило процедуру выбора сеток, подчинив ее лишь одной цели — точности интерполяции. Алгоритм внедрен в пяти типах интерполяционных моделей с индуцированным и встроенным каналами, которые в сочетании с автоматизацией измерения параметров хорошо зарекомендовали себя при проведении точных расчетов схем. По усредненной ошибке они превосходят малоразмерные аналитические модели болсе чем в 10 раз и обеспечивают точность относительной ошибки интерполяции на уровне 3 % в диапазоне токов, отличающихся на четыре порядка.

Автор выражает благодарность В. Л. Мирошниченко за ценную информацию при обсуждении проблем монотонности.

### СПИСОК ЛИТЕРАТУРЫ

 Barby J. A. et al. Polynomial splines for MOSFET model approximation // IEEE Trans. on Computer-Aided Design. -- 1988. -- 7, N 5. -P. 557.

- 3. Люмаров П. П. Применение эрмитовых поликубических интерполяционных сплайнов на криволинейных сетках для электрических моделей МОН-транаисторов с субмикронными размерами // Вычислительные системы, № 137. Приближение сплайнами.—Новосибирск: ИМ СО АП СССР, 1990.
- Merckel G. A simple model of the threshold voltage of short and narrow channel MOSFETs // Solid-State Electron.-1980.-23.-P. 1207.
- Груданов Н. Б. Моделирование МДП-транзисторов в режиме слабой инверсии // Автоматизация проектирования в электронике: Республ. межвед. науч.-техн. сб.—Кисв, 1980.— Вып. 21.
- Zangwill W. I. Minimizing a function without calculating derivatives // Computer J.—1967.—10, N 3.—P. 293.
  Manufact Construction and Computer J.—1967.—10,
- Merckel G. et al. An accurate large-signal MOS transistor model for use in computer-aided design // IEEE Trans. on Electron. Dev.—1972.—19, N 5.—P. 681.

Поступила в редакцию 28 мая 1991 г.

УДК 621.382.323.001.63: 519

### П. П. Люмаров

(Новосибирск)

# ПРИМЕНЕНИЕ МОНОТОННЫХ СПЛАЙНОВ ПРИ ПОСТРОЕНИИ МОДЕЛИ МОП-ТРАНЗИСТОРА СО ВСТРОЕННЫМ КАНАЛОМ

Рассмотрено построение моделей МОП-транзистора со встроенным каналом с помощью монотонных интерполяционных сплайнов на адаптивных сетках криволинейной формы.