ЗАКЛЮЧЕНИЕ ДИССЕРТАЦИОННОГО СОВЕТА 24.1.028.01 (д 003.005.02) НА БАЗЕ ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО УЧРЕЖДЕНИЯ НАУКИ ИНСТИТУТА АВТОМАТИКИ И ЭЛЕКТРОМЕТРИИ СИБИРСКОГО ОТДЕЛЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК ПО ДИССЕРТАЦИИ НА СОИСКАНИЕ УЧЕНОЙ СТЕПЕНИ КАНДИДАТА НАУК

аттестационное дело №
решение диссертационного совета от «20» ноября 2024 г. № 6

О присуждении Ващенко Павлу Владимировичу, гражданину Российской Федерации, ученой степени кандидата технических наук.

Диссертация «Методы обработки линейчатых спектров с малым количеством отсчётов на спектральную линию» по специальности 2.2.6. «Оптические и оптикоэлектронные приборы и комплексы» принята к защите «_18_» __июля__2024 г.
протокол № 5 диссертационным советом 24.1.028.01 (д юз.оо5.02) на базе
Федерального государственного бюджетного учреждения науки Института
автоматики и электрометрии Сибирского отделения Российской академии наук
(ИАиЭ СО РАН), 630090, г. Новосибирск, проспект Академика Коптюга, д. 1,
приказ Минобрнауки России 255/нк от 28 марта 2020 года.

Соискатель Ващенко Павел Владимирович 09.02.1989 года рождения,

- в 2012 году окончил Федеральное государственное автономное образовательное учреждение высшего образования «Новосибирский национальный исследовательский государственный университет» (НГУ),
- в 2016 году освоил программу подготовки научно-педагогических кадров в аспирантуре Федерального государственного бюджетного учреждения науки «Институт автоматики и электрометрии Сибирского отделения Российской академии наук» (ИАиЭ СО РАН)

работает в должности инженер-исследователь в Федеральном государственном

бюджетном учреждении науки «Институт автоматики и электрометрии Сибирского отделения Российской академии наук» (ИАиЭ СО РАН).

Диссертация выполнена в Лаборатории оптических информационных систем (05) Федерального государственного бюджетного учреждения науки «Институт автоматики и электрометрии Сибирского отделения Российской академии наук» (ИАиЭ СО РАН).

Научный руководитель – доктор технических наук

Лабусов Владимир Александрович, заведующий Лабораторией оптических информационных систем (05) Федерального государственного бюджетного учреждения науки «Институт автоматики и электрометрии Сибирского отделения Российской академии наук» (ИАиЭ СО РАН), г. Новосибирск.

Официальные оппоненты:

Захаров Юрий Анатольевич, д.т.н., доцент, профессор кафедры общей физики Института физики Казанского (Приволжского) федерального университета,

Федеральное государственное автономное образовательное учреждение высшего образования «Казанский (Приволжский) федеральный университет», г. Казань.

Щербаков Анатолий Петрович, к.ф.-м.н., старший научный сотрудник Лаборатории молекулярной спектроскопии,

Федеральное государственное бюджетное учреждение науки Институт оптики атмосферы им. В.Е. Зуева Сибирского отделения Российской академии наук (ИОА СО РАН), г. Томск.

дали положительные отзывы о диссертации.

Ведущая организация Федеральное государственное бюджетное учреждение науки Институт спектроскопии Российской академии наук (ИСАН), г. Москва,

в своем положительном заключении, подписанном

• А.М. Большов, д.ф.-м.н., заведующий Лабораторией аналитической

спектроскопии (Отдел молекулярной спектроскопии) ИСАН

заверенном

• Директор ИСАН - Задков Виктор Николаевич, д.ф.-м.н., профессор указала, что диссертационная работа Ващенко Павла Владимировича «Методы обработки линейчатых спектров с малым количеством отсчётов на спектральную линию» полностью соответствует критериям Положения о порядке присуждения ученых степеней, предъявляемых к диссертациям на соискание ученой степени кандидата наук, а ее автор заслуживает присуждения степени кандидата технических наук по специальности 2.2.6. «Оптические и оптико-электронные приборы и комплексы».

Соискатель имеет 34 опубликованные работы, в том числе по теме диссертации 26 научных работ, из которых 11 в рецензируемых научных журналах и изданиях (5 в международных базах данных Web of Science и Scopus), а также 1 патент на изобретение:

- 1. Ващенко П.В., Лабусов В.А., Лихачев А.В. Восстановление распределения интенсивности излучения на поверхности многоэлементного твердотельного детектора // Заводская лаборатория. Диагностика материалов. 2012. Т. 78, № 1-II. С. 94-95
- 2. Панкратов С.В., Лабусов В.А., Неклюдов О.А., Ващенко П.В. Автоматическая градуировка спектрометров с анализаторами МАЭС по длинам волн (профилирование) // Заводская лаборатория. Диагностика материалов. 2015. Т. 81, № 1-II. С. 128-134.
- 3. Семёнов З.В., Лабусов В.А., Неклюдов О.А., Ващенко П.В. Алгоритм обработки последовательностей спектров для сцинтилляционного атомно-эмиссионного спектрального анализа // Заводская лаборатория. Диагностика материалов. 2015. Т. 81, № 1-II. С. 135-142.
- 4. Ващенко П.В., Болдова С.С., Лабусов В.А. Алгоритм обработки последовательностей атомно абсорбционных спектров с непрерывным источником излучения // Заводская лаборатория. Диагностика материалов. 2015. Т. 81, № 1-II. С. 153-157.

- 5. Семёнов З.В., Ващенко П.В., Лабусов В.А., Неклюдов О.А., Болдова С.С. Алгоритм расчёта формы фона в последовательности атомно-абсорбционных спектров с непрерывным источником излучения // Заводская лаборатория. Диагностика материалов. 2017. Т. 83, № 1-II. С. 129-132.
- 6. Лабусов В.А., Болдова С.С., Селюнин Д.О., Скоробогатов Д.Н., Саушкин М.С., Зарубин И.А., Бокк Д.Н., Семенов З.В., Неклюдов О.А., Ващенко П.В. Атомно-абсорбционный спектрометр высокого разрешения для одновременного многоэлементного анализа // Аналитика и контроль. 2018. Т. 22, № 4. С. 451-457. http://dx.doi.org/10.15826/analitika.2018.22.4.003
- 7. V.A. Labusov, S.S. Boldova, D.O. Selyunin, Z.V. Semenov, P.V. Vashchenko, S.A. Babin «High-resolution continuum-source electrothermal atomic absorption spectrometer for simultaneous multi-element determination in the spectral range of 190–780 nm» // J. Anal. At. Spectrom., 2019, 34, 1005-1010. https://doi.org/10.1039/c8ja00432c
- 8. Ващенко П.В., Лабусов В.А., Гаранин В.Г., Борисов А.В. Расширение диапазона определяемых содержаний элементов за счет использования линий с самопоглощением // Заводская лаборатория. Диагностика материалов. 2019. Т. 85. № 1-2. С. 112-116. https://doi.org/10.26896/1028-6861-2019-85-1-II-112-116
- 9. Ващенко П.В., Лабусов В.А. Измерение интенсивности спектральных линий по дискретным отсчётам линейчатого спектра // Аналитика и контроль. 2021. Т. 25, № 4. С. 350-357. http://dx.doi.org/10.15826/analitika.2021.25.4.012
- 10. Ващенко П.В., Лабусов В.А., Шиманский Р.В. Апертурные характеристики линеек фотодетекторов БЛПП-2000 и БЛПП-4000 // «Заводская лаборатория. Диагностика материалов». 2022. Том 88. № 1. ч. II. С. 22-26. DOI: https://doi.org/10.26896/1028-6861-2022-88-1-II-22-26
- 11. Ващенко П.В., Болдова С.С., Колосов Н.А., Лабусов В.А. Моделирование атомно-абсорбционного спектрометра с источником излучения непрерывного спектра // Аналитика и контроль. 2023. Т. 27, № 3. С. 168-179. DOI: 10.15826/analitika.2023.27.3.005
- 12. Пат. 2702854 Рос. Федерация. Способ определения содержания элементов и форм их присутствия в дисперсной пробе и её гранулометрического состава / П.В. Ващенко, В.Г. Гаранин, А.А. Дзюба, В.А. Лабусов, О.В. Пелипасов; № 2019108939;

На диссертацию и автореферат поступил следующий положительный отзыв:

• отзыв на диссертацию **Васильевой Ирины Евгеньевны** (д.т.н., ст.н.с., главный научный сотрудник группы атомно-эмиссионных методов анализа и стандартных образцов, Федеральное государственное бюджетное учреждение науки Институт геохимии им. А.П. Виноградова Сибирского отделения Российской Академии Наук (ИГХ СО РАН), г. Иркутск),

содержит:

- --- замечания к оформлению автореферата;
- --- замечания к разделу "Актуальность": нет информации о том, что можно считать новыми методами обработки сигнала, а что старыми, традиционными. Отсутствует сравнение существующих и предложенных алгоритмов и способов обработки спектров;
- --- замечания к оформлению обоснования достоверности полученных результатов;
- --- замечания к использованию базовых понятий и терминологии спектральных методов в аналитической химии;
- --- автор не смог разделить понятия "метод / способ / вариант", из-за этого текст диссертации труден для понимания;
- --- неверное заявление "Системы разложения излучения в спектр (спектральные приборы)" (страница 23), т.к. диспергирующая система и спектральный прибор это не одно и то же. Диспергирующая система одна из частей любого спектрального прибора,
- --- другие полихроматоры (оптические спектрометры многочисленных производителей) в диссертации не рассматриваются. То есть для спектрометров с другим размером входной щели предложенные автором модели не апробированы;
- --- не согласна с утверждением: "использование линейных детекторов в качестве системы регистрации спектров позволяет за счет многократно увеличенного объема регистрируемых данных существенно улучшить метрологические характеристики методов атомно-эмиссионной и атомно-абсорбционной спектрометрии, а также повысить их производительность

- --- замечание, что диссертант не умеет пользоваться знаниями и результатами исследователей, ранее работавших в этой же области науки;
- --- замечание о недостаточном литературном обзоре;
- --- замечание: не достаточная научная новизна в методологии, которая, в основном, использована в диссертации. Эта методология обработки спектров была подробно описана ещё для сканирующих микрофотометров, а позднее линейных и матричных фотодетекторов;
- --- замечание, что представленный в списке публикаций патент не содержит научной новизны.
- --- замечание к рис. 1.4.: чем обусловлен представленный на рис. 1.4. выбор элементов? Почему не исследовано уширение спектральных линий, например, макроэлемента алюминия?
- --- замечание, что «экспериментальная проверка в разделах "Вычисление аналитического сигнала в случае «зашкаливания» отсчетов детектора" и "Вычисление аналитического сигнала в случае самопоглощения спектральной линии" (страницы 76-84) описана фрагментарно».
- --- замечание, что длины волн линий молибдена, указанные в тексте и на рис. 3.11, не совпадают.
- --- замечание, что оформление списка литературы не соответствует требованиям ГОСТ Р 7.0.11-2011. Кроме этого, для иностранных публикаций часть библиографических данных приводится на английском языке, а часть на русском. Несмотря на замечания, д.т.н. **Васильева И.Е.** поддерживает присвоение Ващенко П.В. ученой степени кандидата технических наук по специальности 2.2.6. «Оптические и оптико-электронные приборы и комплексы»

На автореферат поступили следующие положительные отзывы:

• отзыв **Дулина Владимира Михайловича** - д.ф.-м.н., профессор РАН, ведущий научный сотрудник, заведующий Лабораторией физических основ энергетических технологий,

и **Толстогузова Романа Владимировича** - к.ф.-м.н., младший научный сотрудник Лаборатории физических основ энергетических технологий,

Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук (ИТ СО РАН), г. Новосибирск,

содержит:

- --- замечание, что в автореферате слабо отражены примеры практического применения разработанных математических методов обработки спектров на реальных, экспериментально полученных спектрах исследуемых веществ;
- --- замечания: в автореферате есть опечатки;
- --- замечание, что из текста автореферата не ясно, можно ли уменьшить фоновый сигнал, вызванный неселективным поглощением, за счет регистрации данного сигнала отдельно, без введения исследуемой пробы с последующим вычитанием уже из общего сигнала
- отзыв **Г.С. Спрыгина** (к.т.н., старший научный сотрудник Лаборатории диагностики материалов (№ 17), Федеральное государственное бюджетное учреждение науки институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН), г. Москва),

содержит:

- --- замечание, что для улучшения восприятия информации не хватает сводной таблицы сравнения полученных до и после применения разработанного метода обработки спектров метрологических характеристик
- отзыв **Шаяпова Владимира Равильевича** (к.ф.-м.н., старший научный сотрудник Лаборатории функциональных пленок и покрытий, Федеральное государственное бюджетное учреждение науки Институт неорганической химии им. А.В. Николаева Сибирского отделения Российской академии наук (ИНХ СО РАН), г. Новосибирск), не содержащий замечаний.

- отзыв Савинова Сергея Сергеевича (к.х.н., доцент Кафедры аналитической химии, Институт химии, Федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный университет» (СПбГУ), г. Санкт-Петербург), содержит:
- --- вопрос о возможных областях практического применения предложенных подходов.
- отзыв **Лисиенко Дмитрия Георгиевича** (к.х.н., доцент, доцент Кафедры физико-химических методов анализа, Федеральное государственное автономное образовательное учреждение высшего образования «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина». (УрФУ), г. Екатеринбург),

содержит:

- --- замечание, что слишком кратко дано описание сущности части предлагаемых способов обработки данных;
- --- замечание, что не приведены сведения о том, как предложенные автором методы реализованы в программе обработки атомных спектров «ATOM».

Выбор официальных оппонентов и ведущей организации обосновывается их высокой научной квалификацией и опытом в области атомной спектрометрии, наличием научных публикаций по указанным направлениям, а также их профессиональной способностью оценить научную и практическую ценность результатов диссертационной работы.

Диссертационный совет отмечает, что на основании выполненных соискателем исследований:

разработана компьютерная модель процесса регистрации атомноэмиссионных и атомно-абсорбционных спектров с учетом контура спектральной линии, аппаратной функции спектрального прибора и характеристик линейного детектора излучения. **предложены** методы вычисления аналитического сигнала при малом количестве отсчетов на спектральную линию и её асимметричном контуре путем аппроксимации линии функцией псевдо-Фойгта, параметры которой определяются автоматически по зарегистрированному спектру.

предложен метод обнаружения спектральных линий в зарегистрированных атомно-эмиссионных и атомно-абсорбционных спектрах, основанный на теоретической оценке шума в зависимости от выходного сигнала и параметров фотоячейки (шум чтения, зарядовая ёмкость).

предложен метод вычисления спектрального фона в атомно-абсорбционных спектрах, основанный на аппроксимации спектра с применением алгоритма Савитского-Голая, который, в отличие от известных методов, использует обратную связь для вычисления параметров полинома и диапазона аппроксимации.

предложен способ снижения систематической погрешности вычисления аналитического сигнала в случае дрейфа спектральной линии относительно фотоячеек.

доказано, что предложенные методы позволили:

- автоматизировать процесс вычисления фона и аналитического сигнала в спектрах поглощения и, следовательно, повысить экспрессность проведения анализа;
- по одному спектру вычислить параметры контура линии для ее использования при измерении интенсивности спектральной линии в случае спектральных наложений, самопоглощения линии, а также «зашкаливания» отсчетов детектора излучения;
- увеличить линейный диапазон градуировочного графика на 2 порядка в случае «зашкаленных» отсчетов спектра, а также на 4 порядка в случае самопоглощения спектральной линии;
- снизить систематическую погрешность вычисления аналитического сигнала в случае дрейфа спектральной линии относительно фотоячеек.

Теоретическая значимость исследования обоснована тем, что результаты

исследования могут быть использованы для разработки новых методов обработки спектров и вычисления аналитического сигнала, а также оценки оптимальных параметров оптических спектрометров с точки зрения метрологических характеристик.

применительно к проблематике диссертации результативно (эффективно, то есть с получением обладающих новизной результатов)

изучены факторы, влияющие на процесс регистрации атомно-эмиссионных и атомно-абсорбционных спектров, в том числе аппаратная функция спектрального прибора и его разрешение, а также характеристики системы регистрации спектров: апертурная характеристика фотоячейки, шум чтения, зарядовая емкость, квантовая эффективность, геометрические размеры фотоячейки;

использована компьютерная модель процесса регистрации спектров для определения оптимальных параметров атомно-абсорбционного спектрального прибора с источником излучения непрерывного спектра и электротермическим атомизатором.

использована модель формы контура спектральной линии для вычисления аналитического сигнала при ассиметричном контуре линии, а также в случае спектральных наложений, самопоглощения линии, а также «зашкаливания» отсчетов детектора излучения;

использован метод обнаружения спектральных линий, основанный на теоретической оценке шума в зависимости от уровня выходного сигнала и параметров детектора (зарядовая емкость и шум чтения) для автоматизации алгоритмов обработки спектров и вычисления аналитического сигнала;

Значение полученных соискателем результатов исследования для практики подтверждается тем, что:

разработан и внедрен метод вычисления спектрального фона в атомноабсорбционных спектрах с применением алгоритма Савитского-Голая, который позволил автоматизировать процесс его вычисления и улучшить метрологические характеристики результатов анализа; разработан и внедрен метод вычисления аналитического сигнала при малом количестве отсчетов на спектральную линию и её асимметричном контуре путем аппроксимации линии функцией псевдо-Фойгта, параметры которого определяются автоматически по зарегистрированному спектру, что позволило увеличить линейный диапазон градуировочного графика на 2 порядка в случае «зашкаленных» отсчетов спектра, а также на 4 порядка в случае самопоглощения спектральной линии;

разработан и внедрен метод вычисления аналитического сигнала, использующий линейную интерполяцию и дробный диапазон интегрирования, позволивший снизить систематическую погрешность вычисления аналитического сигнала в случае дрейфа спектральной линии относительно фотоячеек;

определено оптимальное разрешение атомно-абсорбционного спектрометра с источником излучения непрерывного спектра и электротермическим атомизатором с точки зрения получения наилучших метрологических характеристик (пределы обнаружения и линейный диапазон определения);

представлены методические рекомендации для разработки новых методов обработки спектров и аналитического сигнала.

представлены 2 Акта о внедрении результатов диссертационной работы Ващенко П.В..

Оценка достоверности результатов исследования выявила:

для экспериментальных работ результаты получены с помощью современного экспериментального и измерительного оборудования; показана воспроизводимость результатов исследований;

теория, лежащая в основе разработанной модели процесса регистрации спектров с использованием линейных детекторов излучения, описанная в работе, согласуется с экспериментальными данными (известными и проверяемыми), полученными экспериментально для аналитических задач как атомно-эмиссионной, так и атомно-абсорбционной спектрометрии;

использованы современные методики сбора и обработки исходной информации.

Личный вклад соискателя состоит в непосредственном участии на всех этапах работы:

- формулирование цели и постановке задач, решаемых в рамках диссертационной работы;
- изучение процесса регистрации спектров с использованием линейных детекторов излучения и разработка его компьютерной модели в виде библиотеки на языке Python;
- разработка методов обработки спектров и вычисления аналитического сигнала, в том числе оценка их погрешностей с использованием модели регистрации спектров;
- создание «цифрового двойника» атомно-абсорбционного и атомно-эмиссионного спектрометров на основе компьютерной модели процесса регистрации спектров;
- проведение теоретических и экспериментальных исследований;
- обработка и анализ экспериментально измеренных данных;
- апробация результатов на конференциях;
- подготовка публикаций по материалам диссертации.

В ходе защиты диссертации были высказаны следующие критические замечания:

замечание о преобладании в докладе информации о программных средствах над информацией о приборах (замечание снято после пояснений и общего обсуждения)

замечание о неясной физической сути, стоящей за используемым приёмом аппроксимации формы линии (Соискатель дал пояснения).

замечание о желательности писать в защищаемых положениях не просто "компьютерная модель", но "предложенная/разработанная компьютерная модель" (Соискатель согласился).

На заседании 20 сентября 2024 года диссертационный совет принял решение:

за решение научной задачи (разработка модели процесса регистрации атомно-эмиссионных и атомно-абсорбционных спектров с использованием линейных детекторов), имеющей значение для развития одного из самых перспективных направлений метода атомно-абсорбционной спектрометрии присудить Ващенко Павлу Владимировичу ученую степень кандидата технических наук 2.2.6. «Оптические и оптико-электронные приборы и комплексы».

При проведении тайного голосования диссертационный совет в количестве $\underline{23}$ человека, из них $\underline{5}$ членов диссертационного совета по специальности 2.2.6 «Оптические и оптико-электронные приборы и комплексы» - технические науки, участвовавших в заседании, из $\underline{30}$ человек, входящих в состав совета, дополнительно введены на разовую защиту $\underline{0}$ человек, проголосовали: за $\underline{23}$, против $\underline{0}$, недействительных бюллетеней $\underline{0}$.

Председатель диссертационного совета

академик РАН

Шалагин Анатолий Михайлович

Ученый секретарь диссертационного совета

д. ф.-м. н.

MI

Ильичев Леонид Вениаминович

«<u>23</u>» сентября 2024 г.