Магическая длина волны для часового перехода 1.14 мкм в атомах тулия

<u>Е.С.Калганова</u>, А.А.Головизин, Д.О.Трегубов, Г.А.Вишнякова, Д.Д.Сукачев, И.Ю. Толстихина, К.Ю.Хабарова, В.Н.Сорокин, Н.Н.Колачевский

]	ſy	J	IV	IV	Í											
			1	69 69	T	m	1										2
H 3 Li 11 Na	4 Be 12 Mg											5 B 13 AI	6 C 14 Si	7 N 15 P	8 0 16 S	9 F 17 Cl	He 10 Ne 18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra		104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Fl	115 Uup	116 Lv	117 Uus	118 Uuc
Lantha	nides	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	60 Er	69 Tm	70 Yb	71 Lu	
Actinid	es	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	
										Ĺ	f^{13}	3	68	5 ²			
		1,	1	1	1	, t	ţ	†	1	Ļ	1		1,	,			

Часовой переход:

- Тонкое расщепление основного состояния
- Магнито-дипольный
- λ = 1.14 мкм
- $\gamma = 1.2$ Гц
- Экранировка внешними 5s² и 6s² оболочками

Оптич	ески	е час	ы на	атомах тули	R	
Вклад	Сдвиг частоты, мГц	Неточность после учета поправки, мГц	Неточность в относительных сединицах, 10 ⁻¹⁸	E	Battice Battice	CK
BBR ($T = 300 \pm 3$ K)	20	0.8	3			
Эффект Зеемана (B = 10 ± 0.1 mG)	-26	0.5	2	Влияние оптической решетки		Магическая длина волны
Тензорная поляризуемость	0.5	0.5	2	Магнитное диполь- липольное		
Гиперполяризуемост (d <i>l/l</i> = 10 ⁻³)	гь 0	0.5	2	взаимодействие Линейный эффект		Накачка на подуровень $m_F = 0$
Ван-дер-Ваальсово и квадруполь- квадрупольное	0.1	0.1	0.4	Зеемана		
взаимодействия		1.2	< 5	Ван-дер-Ваальсово		2D-решетка с низким
Итог	-6			взаимодействие		числом заполнения

Предполагаемая неточность < 5×10⁻¹⁸

[1] D. Sukachev et al., Phys Rev A 94, 022512 (2016)

План

- Расчет поляризуемостей уровней часового перехода
- Экспериментальный поиск магической длины волны
 - Охлаждение и захват атомов
 - Усиливающий резонатор
 - Оптическая накачка
 - Результаты
- Статическая поляризуемость
- Квадратичный эффект Зеемана

План

→ Расчет поляризуемостей уровней часового перехода

- Экспериментальный поиск магической длины волны
 - Охлаждение и захват атомов
 - Усиливающий резонатор
 - Оптическая накачка
 - Результаты
- Статическая поляризуемость
- Квадратичный эффект Зеемана

Вычисление поляризуемостей

$$\begin{aligned} \alpha_{Fm}(\omega) &= \frac{3}{2} \frac{c^3 \hbar^4}{a_0^3} \sum_{F'} \frac{2F_u + 1}{(E_{F'} - E_F)^2} \begin{pmatrix} F_u & 1 & F_d \\ -m & 0 & m \end{pmatrix}^2 \\ &\times \frac{A_{F_u \to F_d}}{(E_{F'} - E_F)^2 - (\hbar\omega)^2}, \end{aligned}$$

- Использованы экспериментальные данные о спектре Tm [1] и результаты расчетов в COWAN
- Учтен вклад непрерывного и дискретного спектров

[1] M. E. Wickliffe and J. E. Lawler, J. Opt. Soc. Am. B, 14 (4), 737 (1997)

[1] M. E. Wickliffe and J. E. Lawler, J. Opt. Soc. Am. B, 14 (4), 737 (1997)

Длина волны, нм

План

- Расчет поляризуемостей уровней часового перехода
- → Экспериментальный поиск магической длины волны
 - Охлаждение и захват атомов
 - Усиливающий резонатор
 - Оптическая накачка
 - Результаты
- Статическая поляризуемость
- Квадратичный эффект Зеемана

Охлаждение и захват атомов

Охлаждение и захват атомов

Охлаждение и захват атомов

Усиливающий резонатор

- Увеличение интенсивности в 10 раз
- Контроль размера перетяжки
- Стабилизация интенсивности

Усиливающий резонатор

- Увеличение интенсивности в 10 раз
- Контроль размера перетяжки
- Стабилизация интенсивности

Эффективность перезахвата 30%

Усиливающий резонатор

 $|a_0^3 \alpha_s P$

Размер перетяжки 125 ± 10 мкм , расчетный 112 мкм

 $\alpha = 144 \pm 40$, расчетное значение $\alpha = 195$

Оптическая накачка

- Линейный эффект Зеемана
- Диполь-дипольное взаимодействие

Доля атомов в $m_F = 0 \sim 60 \%$

Маленькая поляризуемость в длинноволновом пределе

План

- Расчет поляризуемостей уровней часового перехода
- Экспериментальный поиск магической длины волны
 - Охлаждение и захват атомов
 - Усиливающий резонатор
 - Оптическая накачка
 - Результаты
- → Статическая поляризуемость
- Квадратичный эффект Зеемана

Статическая поляризуемость

$$\Delta f_{BBR} = -\Delta \alpha_0^s \frac{a_0^3 \pi^2 k_B^4}{15c^3 \hbar^4} T^4 = -1.17 \times 10^{-12} \Delta \alpha_0^s [a.e.] T^4 [K]$$

 $\Delta f_{BBR} < 10$ мГц @ 300 К

План

- Расчет поляризуемостей уровней часового перехода
- Экспериментальный поиск магической длины волны
 - Охлаждение и захват атомов
 - Усиливающий резонатор
 - Оптическая накачка
 - Результаты
- Статическая поляризуемость
- → Квадратичный эффект Зеемана

Квадратичный эффект Зеемана

Заключение

Вклад	Сдвиг частоты, мГц	Неточность после учета поправки, мГц	Неточность в относительных единицах, 10 ⁻¹⁸
BBR (<i>T</i> = 300 ± 3 K)	20	0.8	3 🗸
Эффект Зеемана (B = 10 ± 0.1 mG)	-26	0.5	2 🗸
Тензорная поляризуемость	0.5	0.5	2 🗸
Гиперполяризуемост (d <i>l/l</i> = 10 ⁻³)	ь 0	0.5	2
Ван-дер-Ваальсово и квадруполь- квадрупольное взаимодействия	0.1	0.1	0.4
Итог	-6	1.2	< 5

Предполагаемая неточность < 5×10⁻¹⁸

[1] D. Sukachev et al., Phys Rev A 94, 022512 (2016)

Спасибо за внимание!

	∆ <i>f_{BBR},</i> Гц	Квадратичный эффект Зеемана, МГц/Т ²	Чувствительность к параметрам решетки на мдв, (мГц/ГГц)/ <i>E</i> ,
Tm	-0.01	-25.7	4
Sr	-1.34	-23.3	14
Yb	-2.35	-7	22
Al+	-0.008		