Россия:

Д.В. Бражников ^{1,2} А.В. Тайченачев ^{1,2} В.И. Юдин ^{1,2,3}

¹ Институт лазерной физики СО РАН
² Новосибирский государственный университет
³ Новосибирский государственный тех. университет

Франция:

Moustafa Abdel Hafiz Grégoire Coget Rodolphe Boudot *Emeric de Clercq FEMTO-ST, Besançon *LNE-SYRTE, Observatoire de Paris

Высококонтрастный резонанс насыщенного поглощения в поле встречных бихроматических волн для стабилизации оптической частоты в микроволновых КПН-часах на основе холодных атомов

Приложения компактных высокостабильных часов

Современные коммерческие технологии часов

Основные параметры:

- Стабильность
- Энергопотребление
- Габариты и вес

КВАРЦЫ

 $σ ~ 5 × 10^{-12}$ @ 1 c V > 60 cm³

V > 00 CM²

Р ~ 300 мВт

АО «Морион», Россия

ДРОР-часы (рубид. осцил.) σ~ 3 ×10⁻¹¹ @ 1 с σ ~ 3 × 10⁻¹¹ @ 24 ч V ≥ 50 см³ P ≥ 5 Вт Microsemi Corp. Temex Frequency Electronics Время-Ч (Рос.), ...

Полностью оптические КПН-часы

 $\sigma \sim 5 \times 10^{-11}$ @ 1 с и ~ 5×10^{-12} @ 24 ч V < 50 см³, P < 150 мВт

Microsemi Corp., Honeywell, AccuBeat и др.

Преимущества КПН-технологии

- Малые габариты и вес (35 гр):
 - Нет СВЧ-резонатора, как в ДРОР-часах
 - Миниатюрные ячейки и лазеры
- Малое потребление (≈ 120 мВт и меньше в перспективе):

Диодные лазеры, высокоинтегрированная электроника, вакуумирование физ. блока и прочее

• Потенциально высокая стабильность (кратковрем. и долговрем.):

Различные спектроскопические методики для повышения контраста и подавления сдвигов нелинейных резонансов, новые методы наблюдения возбуждения и наблюдения

В погоне за высокой стабильностью и малыми габаритами

Потенциальные преимущества и недостатки КПН-часов на холодных атомах

1) Нет буферных газов => нет столкновительных сдвигов!

нет столкновительного уширения оптических линий! нет эффекта старения ячейки из-за утечки газа

2) Долгое время взаимодействия атомов с полей, т.е. резко сокращены пролетные эффекты и ширина резонанса может быть весьма малой

3) Потенциально высокая долговременная стабильность

1) Циклический режим работы (приготовление холодных атомов, манипуляции), хотя возможен «перезахват» атомов обратно в МОЛ

2) Габариты, потребление – постепенный прогресс, развитие технологий МОЛ...

- 3) Малое количество атомов (~ 10⁶ 10⁷), хотя большая их часть участвует в КПН
- 4) Возможны остаточные доплеровские эффекты при регистрации КПН, но возможны схемы наблюдения с уменьшением этих эффектов

Проблемы стабильности КПН-часов и их решения

Основные причины, ухудшающие стабильность:

Сайдбенды v_{+1} и v_{-1} «привязаны» к линии однофотонного поглощения (уширенный «Доплеровский» контур)

Сайдбенды v_{+1} и v_{-1} «привязаны» к узкому субдоплеровскому резонансу

Сайдбенды v_{+1} и v_{-1} «привязаны» к узкому субдоплеровскому резонансу

Наблюдение высококонтрастного РНП: Первые эксперименты

2982 Vol. 41, No. 13 / July 1 2016 / Optics Letters

Letter

Optics Letters

Doppler-free spectroscopy on the Cs D₁ line with a dual-frequency laser

MOUSTAFA ABDEL HAFIZ,¹ GRÉGOIRE COGET,¹ EMERIC DE CLERCQ,² AND RODOLPHE BOUDOT^{1,*}

¹FEMTO-ST, CNRS, UFC, 26 chemin de l'épitaphe 25030 Besançon Cedex, France ²LNE-SYRTE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, 61 Avenue de l'Observatoire, 75014 Paris, France *Corresponding author: rodolphe.boudot@femto-st.fr

Received 20 April 2016; revised 20 May 2016; accepted 24 May 2016; posted 25 May 2016 (Doc. ID 263549); published 23 June 2016

M. Abdel Hafiz et al., Optics Letters 41, 2982 (2016).

Fig. 1. Experimental setup for Doppler-free Cs D_1 line spectroscopy. EOM, electro-optic modulator; ISL, optical isolator; HWP, half-wave plate; PBS, polarizing beam splitter; BS, beam splitter; QWP, quarter-wave plate; M, mirror; PD, photodiode; LO, local oscillator. The Cs D_1 line energy structure is reminded on the top left.

15

Первые эксперименты

Первые эксперименты

Первые эксперименты

На порядки(!) увеличенная крутизна

Улучшение стабильности КПН-часов

JOURNAL OF APPLIED PHYSICS 121, 104903 (2017)

A high-performance Raman-Ramsey Cs vapor cell atomic clock

Moustafa Abdel Hafiz,¹ Grégoire Coget,¹ Peter Yun,² Stéphane Guérandel,² Emeric de Clercq,² and Rodolphe Boudot¹

¹FEMTO-ST, CNRS, UBFC, 26 chemin de l'Epitaphe, 25030 Besançon Cedex, France ²LNE-SYRTE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, 61 avenue de l'Observatoire, 75014 Paris, France

(Received 14 November 2016; accepted 20 February 2017; published online 10 March 2017)

Физические причины наблюдения высокого контраста?

M. Abdel Hafiz et al., *Optics Letters* **41**, 2982 (2016).

Теория эффекта Реальная структура уровней энергии: ¹³³Сs

Движущийся атом «видит» ЧЕТЫРЕ частоты!!

Теория эффекта Трёхуровневая модель (Л-схема)

Теория эффекта Трёхуровневая модель (Л-схема)

«Зеемановский» КПН в пределах одного уровня F_g

Причины

«Микроволновый» (СТС) КПН эффект, вовлекающий разные СТС-компоненты основного состояния атома, F_{g1} и F_{g2}

Два магнитных подуровня разных уровней F_{g1} и F_{g2}

Теория эффекта Трёхуровневая модель (Л-схема)

«Зеемановский» КПН в пределах одного уровня F_g

Причины

«Микроволновый» (СТС) КПН эффект, вовлекающий разные СТС-компоненты основного состояния атома, F_{g1} и F_{g2}

Простой эффект оптической накачки, объясняемый с помощью скоростных уравнений

Населённости: $\rho_{nn} \neq f(z)$ – только нулевые простр. гармоники Зеемановские когерентности: $\rho_{12,21} \neq f(z)$ – только нулевые гармоники Оптические когерентности: $\rho_{13,23,31,32} \sim e^{\pm ikz}$ – только первые гармоники M. Abdel Hafiz, D. Brazhnikov, G. Coget et al., New J. Phys. **19**, 073028 (2017)

«Зеемановский» КПН в пределах одного уровня F_g Режим большой однофотонной отстройки: |δ| >> γ

Рассмотрим $\delta = v_L - v_0 < 0$, тогда имеется две <u>независимые</u> скоростные группы атомов в газе, которые резонансно взаимодействуют с полем излучения:

M. Abdel Hafiz, D. Brazhnikov, G. Coget et al., New J. Phys. 19, 073028 (2017)

«Зеемановский» КПН в пределах одного уровня F_g <u>Режим однофотонного резонанса: |δ| ≤ γ</u>

Две встречные волны действуют на одну и ту же группу атомов, что приводит к субдоплеровскому резонансу:

«Конкуренция» состояний КПН может привести к отсутствию этого состояния как такового и увеличению поглощения света

«Конкуренция» между NC₁ и NC₂

1) Если NC₁ и NC₂ состояния «параллельны», т.е. $\langle NC_1 | NC_2 \rangle = 1$, то эффект КПН не уничтожается, но, наоборот, ещё больше

атомов накачиваются двумя волнами в «тёмное» состояние, что приводит к

дополнительному просветлению среды и резонансу НП в виде провала.

«Конкуренция» между NC₁ и NC₂

обычный провал 1) Если NC₁ и NC₂ состояния «параллельны», т.е. $\langle NC_1 | NC_2 \rangle = 1$, то эффект КПН не уничтожается, но, наоборот, ещё больше атомов накачиваются двумя волнами в «тёмное» состояние, что приводит к дополнительному просветлению среды и резонансу НП в виде провала.

2) Напротив, если NC_1 и NC_2 ортогональны, т.е. $\langle NC_1 | NC_2 \rangle = 0$, тогда КПН полностью уничтожается и наблюдается резкое увеличение поглощения света.

M. Abdel Hafiz, D. Brazhnikov, G. Coget et al., New J. Phys. 19, 073028 (2017)

 $v_{\rm T}$

«Зеемановский» КПН в пределах одного уровня Fg

«Конкуренция» между NC₁ и NC₂

 $\left|\left< 3 \right| \hat{\mathbf{V}}_2 \left| \mathbf{NC}_1 \right> \right| = \sin\left(\boldsymbol{\varphi}\right)$

1) Если NC₁ и NC₂ состояния «параллельны», т.е. $\langle NC_1 | NC_2 \rangle = 1$, то эффект КПН не уничтожается, но, наоборот, ещё больше атомов накачиваются двумя волнами в «тёмное» состояние, что приводит к дополнительному просветлению среды и резонансу НП в виде провала.

2) Напротив, если NC₁ и NC₂ ортогональны, т.е. $\langle NC_1 | NC_2 \rangle = 0$, тогда КПН полностью уничтожается и наблюдается резкое увеличение поглощения света.

Процессом «конкуренции» состояний КПН <u>можно управлять</u>, меняя параметры поляризации света:

- 1) $lin \parallel lin$ configuration
- 2) *lin* _|_ *lin* configuration

пик поглощения

Результат численных расчётов

Результаты расчётов: влияние продольного магнитного поля

M. Abdel Hafiz, D. Brazhnikov, G. Coget et al., New J. Phys. 19, 073028 (2017)

Результаты экспериментов: влияние продольного магнитного поля

33

M. Abdel Hafiz, D. Brazhnikov, G. Coget et al., New J. Phys. 19, 073028 (2017)

Thank you for your attention!

and Happy New Year!..

Additional slides

When $\delta >> \gamma$, there are two different resonant groups of atoms:

When $\delta >> \gamma$, there are two different resonant groups of atoms:

Spatial inhomogeneity of $NC_{1,2}$ states leads to a spatially inhomogeneous level of absorption or, in other words, to a inhomogeneous fluorescence of the cell:

Raman detuning destroys the microwave CPT phenomenon

Microwave CPT phenomenon embraces two HFS levels F_{g1} and F_{g2} Raman detuning destroys the microwave CPT phenomenon 3 $\delta_{\rm R} = v_1 - v_2 - \delta_{\rm g} \neq 0$ *lin_l_lin*: A spike due to Zeeman & Microwave CPT $\delta_{\sf g}$, *lin_l_lin*: A spike due to Zeeman CPT only *lin* || *lin*: A spike due to The spike effect is absent only Microwave CPT 0.16 0.15 0.15 0.14 0.14 Transmission (V) Transmission (V) 0.13 0.13 0.12 0.12 0.11 0.11 0.10 0.10 0.09 0.09 $\delta_{\mathbf{P}} = 0$, orthogonal $\delta_{\mathbf{R}} = -1 \text{ MHz}$, orthogona 0.08 δ_R =0, parallel 0.08 $\delta_{\mathbf{R}} = -1 \text{ MHz}, \text{ parallel}$ -1000 -500 500 1000 500 1000 -1500 0 1500 -1500 -1000 -500 1500 0 Laser frequency scan (MHz) Laser frequency scan (MHz)

Simple optical pumping effect can also cause the peak creation

M. Abdel Hafiz, D. Brazhnikov, G. Coget et al., New J. Phys. 19, 073028 (2017)

Let us consider a L-scheme as in the case of Zeeman-CPT effect, i.e. there is only one frequency v, which is tuned to the resonance with an atom at rest ($v=v_0$):

Atom at rest sees two light waves, which are far detuned with respect to the one-photon resonances $1 \rightarrow 3$ and $2 \rightarrow 3$ even in case $\delta = 0$

When $|\delta| >> \gamma$ (and let it be $|\delta| > |\Omega|$), there are **4 different resonant groups** of atoms, 2 of them are:

Low level of light absorption due to optical pumping to a non-resonant level

When $|\delta| \sim \gamma$ (and let it be $\Omega > \gamma$), there are **2 different resonant groups** of atoms:

High level of light absorption, because **both arms** of the Λ -scheme are excited

Results of calculations

Optical pumping effect causes the peak effect too Results of experiments

