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Abstract: We study magneto-optical trap of 24Mg atoms operating on the closed triplet 3P2
3D3 ( = 383.3 nm). 

We show the well-known  light filed configuration does not allow to reach deep sub-Doppler cooling temperatures. 

It was considered a cooling in light field formed by light waves with elliptical polarization ( --*configuration). 

This configuration offers 10 times lower cooling temperatures then conventional +-- MOT. Magnetic field and 

light field parameters for stable MOT working are discussed here.
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T-MOT temperature = 1mK   above  Doppler limit !
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Basic mechanism of laser cooling
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1)  Two-level model radiation pressure for 

moving atom
dipole force

kF 

2/DBTkDoppler cooling

2)  polarization effects

"anomalous" sub-Doppler cooling effects

3)  light fields with elliptical polarization

21  JeJg

sub-doppler laser cooling

J.Dalibard and C.Cohen-Tannoudji, J.Opt.Soc. Am. B 

(1989).
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Kinetics of atoms in light fields
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Semiclassical approach
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Fokker-Plank equation

Quantum approaches

r1 r2

r = (r2 + r1)/2, q = r1 - r2

for S = ||2/(2/2+2) << 1
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/
- quantum Monte-Carlo wave-function method

[ J. Dalibard,et.al. PRL 68, 580 (1992) ]

- Band theory (cooling in optical potential)

[Y. Castin,et.al. Europhys. Lett.14, 761 (1991)]

- cooling in + - - field [A. Aspect,et.al. PRL 61,826 (1988)].
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p- family approaches

approximations:
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O. N. Prudnikov, et.al., 

JETP v.112, pp.939-945 (2011)



Generalized continuous fraction method for

density matrix equation
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Density matrix equation in coordinate representation takes the following form for spatial harmonics (n):

Atom-laser interaction part of Hamiltonian can be expressed as sum of two parts from opposite ligth waves.
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1. We assume that the spatial coherence of density matrix is damped at enough large distance qmax we 

consider the spatial interval [–qmax..qmax] and make a mesh with discrete points qi (total Nq points). On the 

mesh we define derivative (n) in standard form:
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2. The equation can be written in Liouville representation with Liouvile operators L0, L+, L- and density matrix 

in Liouville form:
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Example: For the case of optical transition 1/23/2 the vector  contains 18 x Nq elements,

for the case of 1 2 it contains 34 x Nq elements.
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O.N. Prudnikov, A.V. Taichenachev, A.V. Tumaikin, V.I. Yudin, JETP v. 104, p839, (2007) 

O. N. Prudnikov, R.Ya. Ilenkov, A. V. Taichenachev, A. M. Tumikin, and V. I. Yudin, JETP v.112, p.939 (2011) 



Solution of density matrix equation
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Energy of 85Rb atoms in linlin field

(5S1/2 (F = 3)5P3/2 (F'=4)).

The black and white dots represents the temperature 

measurements results [P. S. Jessen, et.al., Phys. Rev. 

Lett. 69, 49 (1992)]

min. of U

max. of U

Momentum distribution (solid line), and Gaussian 

approximation (dashed line).

I/Is = 1.4,   = -8

(a) (b)

(c) (d)

momentum distributionspatial distribution

spatial coherencedensity matrix spatial harmonics
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Density matrix spatial (а) and momentum (b) distributions for 

atoms with Jg=1/2Je=3/2 optical transition in standing wave 

with linear polarization (= - /2,  = , R = 0.1).

Density matrix spatial harmonics of the ground R{g (n)} and 

excited state R{e (n)} (c). 

Spatial coherence functions for the

ground Qg and excited state Qe (d).
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Sub-Doppler cooling of 24Mg: quantum approach

mKT 28.1 

Doppler temperature

I (mW/cm2)

linlin 

 

laser cooling in +-- field

laser cooling in linlin  field

Fig. Optimal parameters of intensity and 

minimum temperature for cooling in +-- field

Fig. Optimal parameters of intensity and 

minimum temperature for cooling in linlin 

fieldI (mW/cm2)

I (mW/cm2)

I (mW/cm2)

Doppler temperature

linlin configuration can't be used for cooling in MOT!



Sub-Doppler cooling conditions

Sub-Doppler temperature
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slow atom approach:
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What happens for non negligible R ?
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(/) function for atoms

with 23 optical transition

negligible

in semiclassical

approach

24Mg                           33P2 → 33D3 61.7                            383.9                    238

optical transition Is  [mW/cm2]  [nm]

.

p  5 hk 

1) violation of slow atom approach

2) range of sub-Doppler force might be few recoil 

momentum.
atom may not "see" sub-Doppler force!
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for S = ||2/(2/2+2) << 1



Sub-Doppler cooling of 24Mg in MOT

No trapping force in linlin filed!

Fig. Temperature of laser cooling of 
24Mg in lin--lin field ( = -/4)

Fig. Temperature of laser cooling of 24Mg in --* field 

( = -/4,  = -) and fraction of atoms with |p|<3hk.

mK28.1

-- * field

I   [mW/cm2] 100 200 300

0 [deg.] -0.28 -0.86 -1.15

T   [h] 0.097 0.118 0.157

0 [deg.] -2 -5.16 -5.16

N|p|<3hk [%] 53.7 48.2 43.4

Fig. Optimal intensity and minimum 

temperature in lin--lin field ( = -/4)
Fig. Optimal ellipticity and minimum temperature for 

different intensity in -- field ( = -/4).

[deg.] [deg.]

[deg.][deg.]

I (mW/cm2)



Magneto-optical potential for 24Mg in in --* MOT

H/ = 1  ( H = 12.7 Gs )

Fig. Force in h units and magneto-optical potential in hRW/

units (RW is beam radius) as function of Zeeman splitting on MOT 

edge in +-- MOT. (I = 100mW/cm2,  = -)

assuming linear growth of magnetic field in trapping zone

  --*

Fig. Force in h units and magneto-optical potential in hRW/

units (RW is beam radius) as function of Zeeman splitting on MOT 

edge in --* MOT. (I = 100mW/cm2,  = -)

Estimation: RW = 0.5 cm, 

for magnetic field gradient z H = 12.7 Gs/cm 

(H/ = 0.5 Gs at edge),

the MOT depth U(H) = 0.094 hRW/ 1.56K that much 

exceed sub-Doppler cooling temperature T125 K. 
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Rw is radius of light beams forming the MOT



Magneto-optical force for trapping in --* MOT

Critical magnetic field for stable --* MOTMagneto-optical force as function of atoms velocity and 

magnetic field. 

(lin--lin field configuration with  = -/4,  = -, I = 100 mW/cm2)

Magneto-optical force trapping zone for  --* 

MOT  ( = -/4,  = -, I = 100 mW/cm2)

Trap should be stable for moving atom as well.

here force push the 

atoms out of the trap

H/ = 1  ( H = 12.7 Gs )

Number of trapped atom Ncvc
4

[C. Monroe, et.al. PRL. 65, 1571 (1990)]

vc> 3.5k/ results Nc107 - 108 at.



Results

1. Quantum recoil effects resulting sub-Doppler cooling are not efficient for 

cooling of 24Mg on 3P2-
3D3 in +-- field configuration.

2. For deep sub-Doppler cooling linlin configuration can be used. 

(Can't be used for MOT!)

3. For deep sup-Doppler cooling in MOT --* light field configuration can 

be used.

- enough deep magneto-optical potential

- for stable MOT magnetic field should not exceed critical values in 

trapping zone.

- positive small ellipticities ( < 5 deg.) of light waves forming the MOT are 

preferred to increase much the critical values for magnetic field.



Ellipticity parameter




