Столкновительные свойства атомов тулия

<u>Лучников И</u>.^{1,4}, Кожокару И.^{1,2}, Давлетов Э.^{1,4}, Цыганок В.^{1,4}, Бушмакин В.^{1,4}, Сукачев Д.^{1,3,5}, Акимов А.^{1,2,3}, и другие.

Russian Quantum Center, Russia¹ Texas A&M University, USA² Lebedev Physical Institute RAS, Russia³ MIPT⁴

Harvard University⁵

Мотивация: изучение поведения сильно коррелированных материалов

Понимание поведения сильно коррелированных систем очень полезно:

- Высокотемпературные сверхпроводники
 - Появляется у некоторых материалов при температурах выше138 К
 - Много интересных приложений
 - Нет теоретической модели
- Магнитные материалы

Richard Feynman

Подход: использовать контролируемые квантовые системы для моделирования реальных систем

- Другие применения:
 - Ядерное взаимодействие
 - Взаимодействие фононов
 - Турбулентность

Ключевая идея: использование ансамбля холодных атомов

Оптическая решетка

Почему обязательно получать БЭК?

- БЭК хорошая отправная точка для симуляции:
 - Ярко выраженные квантовые свойства
 - Известно начальное состояние всех частиц
- Ho
 - Обязательна высокая фазовая плотность
 - Необходимо много атомов для испарительного охлаждения

Only hot ones go away...

¹Based upon ¹²C. () indicates the mass number of the most stable isotope

For a description of the data, visit physics.nist.gov/data

NIST SP 966 (September 2003)

Ожидаемые свойства тулия

- Резонансы Фешбаха в умеренном магнитном поле
- Подходит для охлаждения до БЭК в дипольной решетке
- Сильное магнитное диполь-дипольное взаимодействие (~ в 100 раз сильнее чем для щелочных металлов)
- Возможно управление ядерным и электронным спином
- Одинаковые g факторы для основного и возбужденного состояния

Охлажденные лантаноиди на сегодняшний день :

69

- Сложная структура уровней
- 10µ_B
- 421 nm 1 стадия
- 721nm 2 стадия
- 1064 nm дипольная ловушка
- БЭК получен

- Сложная структура уровней
- $7\mu_B$
- 401 nm 1 стадия
- 583nm 2 стадия
- 1064/1075 nm дипольная ловушка
- БЭК получен

 $4f^{-13}6s^{-2}$

- Простая структура уровней
- $4\mu_B$
 - 410 nm 1 стадия
 - 531 nm 2 стадия
- 532 nm дипольная ловушка
- ?БЭК

 $^{\circ}$ **YD** $4f^{14}6s^{2}$

- Очень простая структура уровней
- 0.5µ_B
- 399 nm 1 стадия
- 556 nm 2 стадия
- 532 nm дипольная ловушка
- БЭК получен

Y. Takahashi, Kyoto University PRL **98**, 030401 (2007)

B.Lev, Stanford University PRL 107, 190401 (2011) F. Ferlaino, Innsbruck University PRL 108, 210401 (2012)

A. Akimov, RQC&LPI, PRA 108, 210401 (2012)

Экспериментальная установка

- Прямая загрузка в МОЛ на слабом переходе
- 2D синяя патока для увеличения кол-во атомов
- Вакуум позволяет жить МОЛ в течение 10 секунд

Установка

Столкновения без участия света

Не упругие столкновения: фото индуцированные

Парные столкновения

Распад МОЛ

Количество атомов в МОЛ

Линейный распад:

Распад за счет парных столкновений:

$$\frac{dN(t)}{dt} = -\gamma N(t) - \beta \frac{N^{2}(t)}{(2\pi)^{2/3}} w^{3}(t)$$
$$\gamma = \gamma_{buffer} + \gamma_{green}$$
$$\vdots \qquad \beta = \beta_{light}$$

Объем ловушки

- Объем уменьшается в процессе распада
- Возможный механизм радиационное отталкивание
- Оптическая плотность ~ 1
- Объем ловушки падает вместе с количеством атомов

Фото индуцированные столкновения

Фото индуцированные столкновения, эксперимент

Аналитическая модель для каналов столкновений

Radiative Escape

٠

• Fine structure changing collisions

DE Pritchard, A Gallagher, PRL 63(9), 957–960, (1989) G. D. Telles, et all PRL, 86(20),4496–4499, (2001) 1.4×10⁻⁹ 2.×10⁻¹¹ Loss rate β , cm³/s 1.5×10^{-11} 1.×10⁻¹¹ 5.×10⁻¹² 2.×10⁻¹⁰ 10 15 20 2 4 6 8 10 0 Laser detuning δ, MHz Laser detuning δ, MHz 2.4×10^{-13} 1.2×10⁻⁹ Log $rate = 10^{-13}$ Cm³/s rate $g^{-10} r \times 2.2$ $rate = 1.8 \times 10^{-13}$ Cm³/s 1.6×10^{-13} Cm³/s 1.6×10^{-13} Loss rate β , cm³/s 1.×10⁻⁹ 8.×10⁻¹⁰ 6.×10⁻¹⁰ 4.×10⁻¹⁰ 2.×10⁻¹⁰ 1.4×10^{-13} 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 1.0 0.0 1.0 Intensity, a.u Intensity, a.u

Резонанс Фешбаха

Резонансы Фешбаха в слабых полях, эксперимент

Feshbach resonances

• Несколько резонансов на Гаусс

Where we are:

- Laser cooling and trapping of Thulium at 532 nm was demonstrated with more then 10^8 at 20 μK
- Light assisted collisions was demonstrated with high binary collision rate, $\beta \sim 10^{1}-9 \ cm^{1}3 \ /s$
- Dipole trap with 5 1075 atoms at 20 μ K
- Evaporation cooling is under optimization, currently 3 μ K reached, phase density so far 107 -4
- Trap frequency (full power) = 700-2000Hz
- Dipole trap lifetime < 1s
- Low field Feshbach resonance detected

Иван Кожокару

Сергей Пятченков (Амстердам)

Олеся

Беляева

(США)

Степан Снигирев

Группа

Margaret

Pavlovich

(MIT)

Денис Сукачев Илья Лучников (Harvard) (МФТИ)

Руководитель группы: Алексей Акимов

Андрей

Елена Хорошилов Калганова Вишнякова

Гульнара

Новые люди в лаборатории:

Дарья Кубликова

Давлетов

Влад Бушмакин

Спасибо за внимание!