# Столкновительные свойства атомов тулия

<u>Лучников И</u>.<sup>1,4</sup>, Кожокару И.<sup>1,2</sup>, Давлетов Э.<sup>1,4</sup>, Цыганок В.<sup>1,4</sup>, Бушмакин В.<sup>1,4</sup>, Сукачев Д.<sup>1,3,5</sup>, Акимов А.<sup>1,2,3</sup>, и другие.

Russian Quantum Center, Russia<sup>1</sup>
Texas A&M University, USA<sup>2</sup>
Lebedev Physical Institute RAS, Russia<sup>3</sup>
MIPT<sup>4</sup>
Harvard University<sup>5</sup>











## Мотивация: изучение поведения сильно коррелированных материалов

## Понимание поведения сильно коррелированных систем очень полезно:

- Высокотемпературные сверхпроводники
  - Появляется у некоторых материалов при температурах выше 138 К
  - Много интересных приложений
  - Нет теоретической модели
- Магнитные материалы



Richard Feynman

## Подход: использовать контролируемые квантовые системы для моделирования реальных систем

- Другие применения:
  - Ядерное взаимодействие
  - Взаимодействие фононов
  - Турбулентность

## Ключевая идея: использование ансамбля холодных атомов

#### Оптическая решетка



Атомы в а оптических решетках очень похожи на электроны в кристаллической решетке









## Почему обязательно получать БЭК?

- БЭК хорошая отправная точка для симуляции:
  - Ярко выраженные квантовые свойства
  - Известно начальное состояние всех частиц
- Ho
  - Обязательна высокая фазовая плотность
  - Необходимо много атомов для испарительного охлаждения





Only hot ones go away...



## Ожидаемые свойства тулия

- Резонансы Фешбаха в умеренном магнитном поле
- Подходит для охлаждения до БЭК в дипольной решетке
- Сильное магнитное диполь-дипольное взаимодействие (~ в 100 раз сильнее чем для щелочных металлов )
- Возможно управление ядерным и электронным спином
- Одинаковые g факторы для основного и возбужденного состояния





## Охлажденные лантаноиди на сегодняшний день:

- Сложная структура уровней
- $10\mu_{\rm B}$
- 421 nm 1 стадия
- 721nm 2 стадия
- 1064 nm дипольная ловушка
- БЭК получен

68 Er

- Сложная структура уровней
- 7μ<sub>B</sub>
- 401 nm 1 стадия
- 583nm 2 стадия
- 1064/1075 nm дипольная ловушка
- БЭК получен

 $^{69}$  Tm  $_{4f}^{13}6 s^{2}$ 

- Простая структура уровней
- 4µ<sub>B</sub>
- 410 nm 1 стадия
- 531 nm 2 стадия
- 532 nm дипольная ловушка
- ?БЭК

 $^{70}$  Yb  $_{4f}^{14}6s^{2}$ 

- Очень простая структура уровней
- $0.5\mu_{\rm B}$
- 399 nm 1 стадия
- 556 nm 2 стадия
- 532 nm дипольная ловушка
- БЭК получен

B.Lev, Stanford University PRL 107, 190401 (2011)

F. Ferlaino, Innsbruck University PRL 108, 210401 (2012)

A. Akimov, RQC&LPI, PRA 108, 210401 (2012)

Y. Takahashi, Kyoto University PRL **98**, 030401 (2007)

## Структура уровней тулия



## Экспериментальная установка



- Прямая загрузка в МОЛ на слабом переходе
- 2D синяя патока для увеличения кол-во атомов
- Вакуум позволяет жить МОЛ в течение 10 секунд

## Установка









## Столкновения без участия света



# Не упругие столкновения: фото индуцированные



## Парные столкновения

#### Распад МОЛ

Количество атомов в МОЛ

$$\frac{dN(t)}{dt} = -\gamma N(t) - \beta \frac{N^{2}(t)}{(2\pi)^{2/3} w^{3}(t)}$$

Линейный распад:

$$\gamma = \gamma_{\text{buffer}} + \gamma_{\text{green}}$$

Распад за счет парных столкновений:

$$\beta = \beta_{\text{light}}$$





## Объем ловушки

- Объем уменьшается в процессе распада
- Возможный механизм радиационное отталкивание
- Оптическая плотность ~ 1
- Объем ловушки падает вместе с количеством атомов





### Фото индуцированные столкновения



# Фото индуцированные столкновения, эксперимент

Light assisted losses, detuning



#### Light assisted losses, power



## Аналитическая модель для каналов столкновении

Fine structure changing collisions

Intensity, a.u

Radiative Escape

Intensity, a.u

20

1.0



## Дипольная ловушка и испарительное охлаждение



### Резонанс Фешбаха

$$\frac{h^2}{\pi m} a = \frac{h^2}{\pi m} a_P + \frac{|\langle \psi_r | H_{QP} | \psi_0 \rangle|^2}{E - E_r}$$

$$a = a_P + a_P \frac{\Delta B}{B - B_0}$$





## Резонансы Фешбаха в слабых полях, эксперимент

#### Feshbach resonances



- Несколько сильных резонансов Фешбаха в слабом поле
- Несколько резонансов на Гаусс

### Where we are:

- Laser cooling and trapping of Thulium at 532 nm was demonstrated with more then 10<sup>8</sup> at 20 μK
- Light assisted collisions was demonstrated with high binary collision rate,  $\beta \sim 107-9$  cm?3 /s
- Dipole trap with 5 10 75 atoms at 20 μK
- Evaporation cooling is under optimization,
   currently 3 μK reached, phase density so far 10 7
   -4
- Trap frequency (full power) = 700-2000Hz
- Dipole trap lifetime < 1s
- Low field Feshbach resonance detected

## Группа



Иван Кожокару



Сергей Пятченков (Амстердам)



Степан Снигирев (MPQ)



Денис Сукачев (Harvard)



Илья Лучников (МФТИ)



Андрей



Елена



Гульнара Хорошилов Калганова Вишнякова



Олеся Беляева (США)



Margaret **Pavlovich** (MIT)



Руководитель группы: Алексей Акимов

#### Новые люди в лаборатории:



Дарья Кубликова



Влад Бушмакин



Давлетов



Влад Цыганок





## Спасибо за внимание!