Киральные спиновые фототоки в двумерном топологическом изоляторе

Список соавторов

ИФП СО РАН

Д.А. Козлов З.Д. Квон

H.H. Михайлов C.A. Дворецкий

ФТИ им. Иоффе С.А. Тарасенко М. Дурнев В.В. Бельков

Universität Regensburg

Regensburg University

K.-M. Dantscher M.-T. Scherr, S. Gebert, J. Bärenfänger¹, S.D. Ganichev D. Weiss

Современное состояние области

Что известно о краевых состояниях двумерных топологических изоляторов?

Немножко теории.

- 1. Что такое топологический изолятор?
- 2. Двумерный топологический изолятор (2Д ТИ)
- 3. Реализация 2Д ТИ в квантовой яме HgTe.

Немножко практики.

- 1. Локальный краевой транспорт
- 2. Нелокальный краевой транспорт
- 3. Спиновая инжекция
- 4. Зачем изучать фототоки?

Инвертированный спектр объемного HgTe

Образование поверхностных состояний (ЗД ТИ)

B.A.Volkov, O.A. Pankratov, JETP Letters 1985; L.G. Gerchikov, A.V. Subashev, phys. stat. sol. (b) 160, 443 (1990)

Напряженный слой HgTe как трехмерный топологический изолятор

G. Budkin et al., unpublished C. Brune et al., PRL106,126803 (2011)₆

Первый двумерный топологический изолятор (2Д ТИ)

PRL 95, 226801 (2005)

PHYSICAL REVIEW LETTERS

week ending 25 NOVEMBER 2005

Quantum Spin Hall Effect in Graphene

C.L. Kane and E.J. Mele

FIG. 1. (a) One-dimensional energy bands for a strip of graphene (shown in inset) modeled by (7) with $t_2/t = 0.03$. The bands crossing the gap are spin filtered edge states.

2Д ТИ в квантовой яме HgTe

Schematic of the spin-polarized edge channels in a quantum spin Hall insulator.

Первая реализация 2Д ТИ. Локальный транспорт

Quantum Spin Hall Insulator State in HgTe Quantum Wells

Markus König,¹ Steffen Wiedmann,¹ Christoph Brüne,¹ Andreas Roth,¹ Hartmut Buhmann,¹ Laurens W. Molenkamp.¹* Xiao-Liang Oi.² Shou-Cheng Zhang² 2 NOVEMBER 2007 VOL 318 **SCIENCE**

Fig. 4. The longitudinal fourterminal resistance, R14,23, of various normal (d = 5.5 nm) (I) and inverted (d = 7.3 nm) (II, III, and IV) QW structures as a function of the gate voltage measured for B = 0 T at T = 30 mK. The device sizes are $(20.0 \times 13.3) \text{ }\mu\text{m}^2$ for devices I and II, (1.0×1.0) μ m² for device III, and (1.0 \times 0.5) µm² for device IV. The inset shows $R_{14,23}(V_{o})$ of two samples from the same wafer, having the same device size (III) at 30 mK (green) and 1.8 K (black) on a linear scale.

Fig. 7. (Color online) This schematic sketch of the devices shows the QSH edge states under the gate (shaded region). The ungated parts of the sample are n-type.

Нелокальный транспорт: доказательство краевого транспорта

Nonlocal Transport in the Quantum Spin Hall State

Спиновая поляризация краевых состояний

Spin polarization of the quantum spin Hall edge states

Schematic of the spin-polarized edge channels in a quantum spin Hall insulator.

NATURE PHYSICS | VOL 8 | JUNE 2012

Спиновая поляризация краевых состояний

Spin polarization of the quantum spin Hall edge states

NATURE PHYSICS | VOL 8 | JUNE 2012

employing quasi-d.c. low frequency (13 Hz) lock-in techniques using a voltage bias below 100 $\mu V.$

Deducing the spin polarization

Although experiments have been performed on a variety of different devices and yield similar results, for reasons of consistency we will discuss here a single device with dimensions as indicated in Fig. 1. The results of the experiments are shown in Figs 3 and 4, corresponding to the measurement configurations of Fig. 1a and b, respectively. In Figs 3a and 4a, the non-local resistance is plotted as a function of gate 1, and in Figs 3b and 4b, gate 2 is swept.

Спиновая поляризация краевых состояний

Evidence on the Macroscopic Length Scale Spin Coherence for the Edge Currents in a Narrow HgTe Quantum Well[¶]

JETP Letters, 2015, Vol. 101, No. 12, pp. 814-819.

А как насчет взаимодействия со светом?

- возбудить краевые состояния цикрулярно поляризованным излучением ТГц диапазона
 - → генерация спин-поляризованных фототоков
 - → направление фототоков зависит от киральности падающего излучения

Образцы и транспортный отклик

Схема установки для изучения ФГЭ

• Молкулярный ТГц лазер

- *P* ≈ 10 mW (на образце)
- $\lambda = 118 \ \mu m \ (\hbar \omega = 10.4 \ meV)$
- $\lambda = 184 \ \mu m \ (\hbar \omega = 6.7 \text{meV})$
- изменение поляризации λ/4-пластиной

• Оптический криостат

- *T* = 4.2 K 15K
- *В* до ± 7 Т

• Фототоки измеряются с помощью синхронного детектирования

Фототоки вблизи $E_{\rm g}$

Фототоки вблизи *E*_g

Фототок зависит от Vg
Фототок меняет знак вблизи CNP

3,2 μm

<u>32,8μm</u> <u>8,6μm</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>2,8</u>μm

• Фототок зависит от Vg

 Фототок меняет знак вблизи CNP

• Фототок меняет знак при смене киральности падающего излучения

Фототоки вблизи $E_{\rm g}$

• Фототок зависит от Vg

 Фототок меняет знак вблизи CNP

• Фототок меняет знак при

⁰⁰ смене киральности падающего излучения

 Фототок разнонаправлен на противоположных сторонах 20 образца

Фототоки: краевой и объемный вклады

Фототоки: краевой и объемный вклады

• выделяем циркулярные фототоки:

$$\Rightarrow J^{c} = \frac{J^{\sigma^{+}} - J^{\sigma^{-}}}{2}$$

Фототоки: краевой и объемный вклады

• выделяем циркулярные фототоки:

$$\Rightarrow J^{c} = \frac{J^{\sigma^{+}} - J^{\sigma^{-}}}{2}$$

вклад от краев:

$$J_{edge}^{c} = \frac{J_{directionI}^{c} - J_{directionI}^{c}}{2}$$

• вклад от объема

$$J_{QW}^{c} = \frac{J_{directionI}^{c} + J_{directionI}^{c}}{2}$$

Фототоки: краевой и объемный вклады

Возможные переходы, дающие краевые фототоки

Анализ фототоков в зоне проводимости

current in the QW: → known for (013) HgTe QWs

Ref: Wittmann et al., SST, 25, 095005 (2010)

Анализ фототоков в зоне проводимости: объем и «край»

current in the QW:
 → known for (013) HgTe QWs

Ref: Wittmann et al., SST, 25, 095005 (2010)

edge current of the QW: → scattering on the edge

Ref: Karch et al., PRL, 107, 276601 (2011)

Анализ фототоков в запрещенной зоне

 \rightarrow due to selection rules one of the transitions

has a higher probabilty

- \rightarrow disballance in *k*-space
- → photocurrent

 \rightarrow opposite helicity mirrors the picture \rightarrow change of sign

Анализ фототоков

Расчет: С. Тарасенко, М. Дурнев (ФТИ им. Иоффе)

Заключение

8 nm HgTe КЯ – 2Д Топологический изолятор

→Циркулярно поляризованное ТГц излучение возбуждает краевые киральные фототоки

→Механизм образования фототоков: асимметричная фотоионизация краевых состояний

Баллистический и диффузный транспорт в больших образцах

PHYSICAL REVIEW B 84, 121302(R) (2011)

Transport in disordered two-dimensional topological insulators

G. M. Gusev,¹ Z. D. Kvon,² O. A. Shegai,^{1,2} N. N. Mikhailov,² S. A. Dvoretsky,² and J. C. Portal^{3,4,5}

Что еще можно извлечь из транспортных измерений?

FIG. 1 (color online). Hall and magnetoresistance for sample no. 6 at zero gate voltage. The measurement yields an electron mobility of 1.1×10^6 cm⁻²/V · s and a carrier density of 4.3×10^{11} cm⁻². Inset: Micrograph of the Hall bar structure.

PHYSICAL REVIEW B 87, 081311(R) (2013)

FIG. 3. (Color online) Local R_{xx} and nonlocal $R_{NL} = R_{I=2,6;V=3,5}$ resistances as a function of the magnetic field near the peak maximum (CNP), with T = 4.2 K.

